首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
京津冀地区钢铁行业高时空分辨率排放清单方法研究   总被引:13,自引:0,他引:13  
针对目前京津冀地区钢铁行业大气污染物排放量基数不清,排放清单缺失的现状,以钢铁行业调研、企业在线监测、污染源调查等数据为基础,综合考虑钢铁行业具体工艺设备、环保措施、产能等信息,按照自下而上的方法建立了一套高时空分辨率排放清单.经计算,2012年京津冀地区钢铁企业排放SO2为47.16万t,NOx为37.22万t,烟粉尘为34.15万t,其中烧结和高炉工艺为京津冀钢铁行业污染物的主要来源;从空间分布来看,唐山、邯郸两地区集中了整个京津冀地区一半以上的钢铁企业,其污染物排放量占到了整个区域钢铁企业排放总量的一半以上.  相似文献   

2.
利用京津冀钢铁行业高分辨率排放清单,结合区域具体淘汰产能设备名单,采用空气质量模式CAMx模拟并分析现状和化解产能情景下京津冀地区钢铁行业大气污染物对区域空气质量的贡献情况.结果表明,现状情景下,冬季钢铁企业对整个区域PM_(2.5)、SO_2、NO_x最高浓度贡献比例分别为14.0%、28.7%、43.2%,夏季分别为13.1%、28.7%、53.4%.化解产能情景下京津冀钢铁行业SO_2、NO_x、烟粉尘、PM_(2.5)与2012年排放现状相比,排放量分别下降了10.75%、10.65%、9.75%、9.75%,排口数量下降了11.74%,钢铁企业对京津冀各城市PM_(2.5)、SO_2、NO_x浓度贡献比例均有减少,冬季贡献比例最多减少了1.4%、2.5%、3.1%,夏季贡献比例最多减少了0.9%、2.0%、3.5%.  相似文献   

3.
自下而上建立2018年中国高分辨率钢铁企业大气污染物排放清单(HSEC,2018),定量模拟中国钢铁企业2018年和未来年情景下排放各种大气污染物对环境的影响情况.结果表明:2018年,中国钢铁行业共排放SO2、NOx、PM10、PM2.5、PCDD/Fs、VOCs、CO、BC、OC、EC、氟化物分别为29.02万t、66.57万t、28.73万t、11.69万t、2.24kg、89.21万t、4057.49万t、0.45万t、0.61万t、0.06万t、0.88万t,焦化、烧结、球团、高炉4个铁前工序是中国钢铁行业大气污染物主要排放环节,中国钢铁行业对各省份SO2、NOx、PM2.5年均浓度贡献比例平均值分别为2.85%、3.37%、1.54%;未来年,中国钢铁企业SO2、NOx、PM10排放量分别为4.94万t、7.58万t、4.11万t,分别下降了82.98%、88.61%、85.69%,中国钢铁行业对各省份SO2、NOx、PM2.5年均浓度贡献比例平均值分别为0.31%、0.22%、0.02%.  相似文献   

4.
要闻浏览     
环保部发布《2012中国环境状况公报》环保部日前发布《2012中国环境状况公报》。2012年全国化学需氧量排放量为2423.7万吨,氨氮排放量为253.6万吨,分别比上年减少3.05%、2.62%;废气中二氧化硫排放量为2117.6万吨,氮氧化物排放量为2337.8万吨,分别比上年减少4.52%、2.77%。  相似文献   

5.
工业炉窑是大气污染物的重要排放源之一,针对除钢铁、水泥、焦化、石化等行业外的非重点行业炉窑,研究二氧化硫、氮氧化物、颗粒物的排放量及其在2025年的削减潜力,以期对“十四五”时期炉窑污染治理提出建议.非重点行业炉窑具有行业和区域分布广、底数不清、治理水平差、对环境质量影响大等特点,基于第二次全国污染源普查结果,二氧化硫、氮氧化物、颗粒物排放量分别占工业源排放总量的34.0%、21.2%、9.9%.研究充分考虑“十四五”经济社会发展特征和生态环境保护需要,建立了淘汰小型燃煤炉窑、清洁能源替代、提高末端治理设施去除率等减排方案,设定了两种减排情景(其中,情景1为小型燃煤炉窑淘汰+部分燃煤炉窑实施煤改气+治理效率提高至炉窑平均去除率,情景2为小型燃煤炉窑淘汰+部分燃煤炉窑实施煤改气+治理效率提高至工业源平均去除率),估算了2025年不同情景下非重点行业炉窑二氧化硫、氮氧化物、颗粒物的削减潜力及其排放量.结果表明:维持2017年管控水平下,2025年二氧化硫、氮氧化物、颗粒物排放量较2017年分别增加42.32%、40.11%、45.82%;情景1下,2025年二氧化硫、氮氧化物、颗粒物排放量分别较2017年减少0.84%、增加20.86%、减少71.49%;情景2下,2025年二氧化硫、氮氧化物、颗粒物排放量分别较2017年减少63.30%、16.67%、68.51%.根据情景分析结果,结合典型大气污染物“十四五”减排策略,明确了增设末端治理设施的行业,以及开展小型燃煤炉窑清理整顿和清洁能源替代的区域等.   相似文献   

6.
上海市能源CO_2排放及节能减排的减碳效果分析   总被引:2,自引:2,他引:0  
以 2005 年为基准,采用 IPCC 清单指南推荐的方法测算了上海市能源活动产生的 CO2 排放清单。并采用情景分析方法,预测了高碳情景和低碳情景下上海市能源需求及相应的二氧化碳排放趋势,探讨了节能减排等低碳政策所产生的碳削减的潜力。研究表明,2005 年上海市能源活动所排放的 CO2 总量为 1.72 亿 t,其中,能源加工转换产生的 CO2 排放量为 7740 万 t,占排放总量的 44%;工业次之,占 30%;交通运输的排放比例为 16%。煤炭和石油的消费是导致 CO2 排放的主要原因,2005 年煤炭所带来的 CO2 排放量为1.10 亿 t,油品所产生的 CO2 排放量为 0.58 亿 t,分别占到能源活动 CO2 排放总量的 64.0%和 33.7%。 2005 年上海市人均 CO2 排放量为9.68 t/人,是世界平均水平的 2.4 倍,是中国平均水平的 3.8 倍。研究表明,在低碳政策下,上海能源需求将有所控制,到 2020 年全市能源需求总量为 1.6 亿 t 标煤, 比高碳情景节约 1.4 亿 t 标煤。节能减排政策还将使得全市能源活动 CO2 排放比高碳情景显著下降,到2020 年全市 CO2 排放量为 3.26 亿 t,比高碳情景减少 3.1 亿 t,低碳政策所产生的碳减排效益十分明显。  相似文献   

7.
以深圳港船舶大气污染排放为研究对象,通过自下而上的方法核算深圳远洋船舶和内河船舶的大气污染物排放量。结果表明,2013年深圳港船舶排放可吸入颗粒物1,736t、细颗粒物1,411t、氮氧化物19,992t、二氧化硫13,106t、一氧化碳2,224t、挥发性有机物822t。与全市排放总量相比,船舶排放对细颗粒物、氮氧化物、二氧化硫的排放有重要影响,分担率分别为5.2%、16.4%和58.9%。其中,以远洋船舶为首要来源,占船舶排放总量的90%左右。  相似文献   

8.
双碳约束下煤化工行业节煤降碳减污协同   总被引:1,自引:1,他引:0  
在碳达峰碳中和背景下,煤化工行业应采取更为积极的二氧化碳减排措施.基于煤化工行业原料结构调整、燃料结构调整、节能技术改造、末端捕集技术和产业结构调整五大节煤降碳措施力度不同,采用下游部门需求法和项目法以及大气污染物减排模型,核算预测3种情景(基准、政策和强化)煤化工行业煤炭消耗和二氧化碳排放变化,以及大气污染物协同减排效应.结果表明,煤化工行业基准和政策情景下煤炭消费量预计在“十四五”后期达峰,峰值分别为9.6亿t和9.3亿t;强化情景下有望在“十四五”前期达峰,峰值约为9.1亿t.二氧化碳排放量在基准、政策和强化情景下分别于“十五五”末期、“十四五”末期和“十四五”前期达峰,达峰量分别为6.4亿、 5.7亿和5.5亿t.控制现代煤化工项目建设规模、挖掘原料替代的空间以及节能技术改造是减少煤化工行业煤耗和二氧化碳排放的重要措施手段.实施煤化工行业节煤降碳措施,政策情景下预计到2035年每年可协同减少SO2、 NOx、 PM和VOCs等大气污染物排放3.7万、 4.3万、 1.1万和2.8万t.  相似文献   

9.
通过分析二氧化碳排放影响因素之间作用关系与碳减排的主要路径,构建二氧化碳排放系统动力学模型。在此基础上,通过调控供给侧经济增长速度、能源结构和产业结构要素,预测四种不同情景方案对二氧化碳排放的影响,以进一步探讨二氧化碳排放主要部门减排贡献。结果表明:四种方案的二氧化碳净排放量增长趋势逐年变缓,在二氧化碳净排放量达到峰值后,调整经济增速、改善能源结构和优化产业结构继续为碳减排发挥积极作用,相比于经济增速和产业结构调整,能源结构改善的减排贡献度更高。在综合调控经济增速、能源结构和产业结构的方案下,中国二氧化碳净排放量2024年将达到高峰值104.45亿t,2058年实现碳中和,这与现实情况更加吻合。未来若能抓住经济、能源、产业低碳转型的良好机遇,并进一步加强各部门的减排努力,中国二氧化碳净排放量有望2025年前达峰,2060年前实现碳中和。  相似文献   

10.
我国主要污染物排放强度区域特征分析研究   总被引:4,自引:0,他引:4  
文章以我国2012年化学需氧量、氨氮、二氧化硫、氮氧化物、烟粉尘和工业固体废物等6种主要污染物的综合排放量与工业排放量数据为依据,应用层次分析赋权方法,测算了不同省份的综合污染值,对我国的污染物综合排放情况进行了评价分析。并与2005年相关研究成果进行了对比分析,找出了我国在污染物排放、治理方面取得的成果与存在的问题,针对我国不同区域的地域、经济、产业等特征要素提出了相应的政策建议。  相似文献   

11.
唐山作为钢铁生产密集型城市,2020年粗钢产量为1.44亿t,全市规模以上工业综合能耗综9974万t标准煤,2018年唐山市工业SO2、NO<i>x排放量近6.9万,15.8万t。在产业可持续转型发展与城市共容的双重挑战下,河钢集团以河北省钢铁产业结构调整为契机,优化自身产业布局,采用高效节能、低碳环保的绿色工厂设计理念建造唐钢新区,尤其在能效提升、全流程超低排放、副产品资源化、水资源化高效利用等方面实施一系列绿色制造技术,为国内钢铁企业应用绿色制造技术提供了借鉴。  相似文献   

12.
石化化工行业是高耗能高排放行业之一,约占工业部门碳排放比例的10%,研究石化化工行业碳排放达峰路径不仅能推动工业部门尽早实现达峰,同时也为石化化工行业加快绿色低碳转型指明方向. 基于中国统计年鉴、行业协会、企业碳核查等多来源数据,在分析历史排放趋势的基础上,识别能源集中度高的重点行业和产品,采用情景分析法针对石油和天然气开采业、石油煤炭及其他燃料加工业、化学原料及化学制品制造业三大子行业中的炼油、乙烯、丙烯、对二甲苯和合成氨等重点产品,预测其基准情景和控排情景下的重点产品产量和碳排放强度,以及石化化工行业2021—2035年二氧化碳排放趋势. 石化化工行业在基准情景下排放量无法实现2030年前达峰,控排情景下将于2030年达峰,峰值为17.3×108 t. 通过能源结构调整、节能和低碳技术改造、低碳循环及高效利用等途径可以实现行业减排,与BAU(仅考虑石化产品产量变化,不考虑产品结构、单位产品能耗变化)情景相比,减排贡献最大的路径是化石能源利用清洁化改造,2030年相对BAU减排1.19×108 t,贡献率约44%;其次是加大节能和低碳技术改造力度和资源循环及高效利用,减排量分别为0.8×108和0.6×108 t,减排贡献率分别达到29%和22%.   相似文献   

13.
基于全产业链视角,采用资源环境投入产出模型,定量化模拟了在现有产业技术条件下国家《大气污染防治行动计划》(下称《计划》项目)实施对社会经济和资源环境的潜在影响. 结果表明,《计划》项目实施:①将拉动我国GDP累计增加20 570×108元,非农就业岗位累计增加260×104个,起到刺激经济发展、促进社会就业等作用;②将直接带动环保装备制造、建筑安装、综合技术服务、锅炉技术改造以及新能源汽车等相关行业的发展,同时通过产业链关联间接带动金属冶炼压延加工业,化学工业(不含塑料和橡胶,下同),非金属矿物制品业,电力、热力的生产和供应业等传统高耗能、高污染产业的发展;③将累计新增SO2、NOx、烟粉尘排放量分别为121.3×104、96.0×104和60.7×104 t,年均新增排放量相当于预期减排能力的3.8%、2.2%、2.2%,主要集中于电力、热力的生产和供应业,金属冶炼压延加工业,非金属矿物制品业,化学工业以及石油加工炼焦核燃料加工业等5个行业;④将累计新增煤炭、水资源消耗量分别为1.6×108和108.2×108 t,二者的年均新增消耗量相当于2010年消耗量的1.05%和0.36%,主要集中于电力、热力的生产和供应业及金属冶炼压延加工业. 未来应加快环保产业发展,不断优化产业结构,进一步提高火电、钢铁等国民经济基础性行业污染治理效率和资源使用效率,从产品供给角度减少大气治理活动对环境的影响.   相似文献   

14.
采用IPCC温室气体排放清单中CO2排放因子与估算方法,核算了1995—2012年中国30个省区(不含港澳台地区和西藏自治区数据,全文同)服务业的CO2排放量,并对30个省区服务业人均CO2排放量的时空特征进行分析;利用基于面板数据的EKC模型检验中国及其三大经济带服务业增长与CO2排放之间的关系. 结果表明:在考察期内,中国服务业人均CO2排放量从0.16 t升至0.77 t,服务业人均增加值从1 621.04元增至9 991.95元;服务业人均CO2排放量排在前列的省区大都位于东部地区;东部和中部地区人均CO2排放量与服务业人均增加值之间呈线性正相关,人均服务业增加值每增加1个单位,人均CO2排放量将分别增加1.02和1.16个单位;西部地区人均CO2排放量与服务业人均增加值之间呈单调递增关系. 在此基础上,提出差别化的碳减排对策:①东部地区应通过技术改进和优化产业结构、能源消费结构来降低CO2排放,并成为中国服务业节能减排的“领头羊”;②中、西部地区应在保持服务业经济适当增速的前提下,将提高能源利用效率和降低能源强度作为减排重点.   相似文献   

15.
利用情景分析法建立了2010—2030年我国电力行业SO2、NOx、PM10、PM2.5的排放控制情景,分析了发电技术结构调整、加严及进一步加严末端控制措施(脱硫、脱硝、除尘等)的减排成本和效果. 结果表明:到2030年,相对于趋势照常情景,若加严末端控制设施,将新增336×108元投资,SO2、NOx、PM10、PM2.5排放量可分别减少121×104、852×104、18×104、10×104 t;若进一步加严末端控制措施,将再新增25×108元投资,NOx、PM10、PM2.5可分别进一步减排45×104、23×104、15×104 t;若进行发电技术结构调整,将新增2 383×108元投资,SO2、NOx、PM10、PM2.5排放量分别减少248×104、420×104、18×104、10×104 t;2020年和2030年发电技术结构调整带来的单位污染物减排成本分别为15 374和34 239元/t,是末端控制措施加严的3倍以上,但其能提供更大的SO2减排空间并具有降低能耗和减排温室气体等协同效益. 从成本效果角度考虑,建议采用加严末端控制措施方案,同时调整发电技术结构、合理发展清洁发电技术,以为污染物减排提供更大空间.   相似文献   

16.
钢铁行业是我国主要的能源消费及CO2排放行业,推动钢铁行业低碳绿色发展已成为实现我国碳达峰、碳中和的重要环节。为此,研究围绕能源结构调整、工艺结构优化、节能减排技术推广和CCUS技术应用4方面,通过设置基础情景、稳定发展情景和强化减排情景3类情景,利用边际减排成本曲线对我国钢铁行业34项减排技术的减排成本和减排潜力进行分析。结果表明:在稳定发展情景下,我国钢铁行业平均减排成本为433元/tCO2,所有技术的总减排成本为2100亿元,总减排潜力为4.9亿t。在各项减排技术中,废铁-电弧炉炼钢具有较高的减排经济效益,其以较低的单位减排成本贡献了钢铁行业近50%的碳减排量。未来,我国应加快推进长流程炼钢向短流程炼钢的发展,推动钢铁行业生产工艺的结构性调整。  相似文献   

17.
为降低水泥行业碳减排成本,确定最优碳减排技术路径,研究基于经济-能源模型,核算中国水泥行业最新碳减排技术的边际减排成本,使用情景分析方法,研究了与未实施减排技术相比,2020年17项技术的碳减排潜力,并将其作为基准情景,和2025,2030,2035年3个未来情景的碳减排潜力作比较,从而得出不同情景下的边际减排成本曲线。结果表明:1)2020年我国水泥行业17项减排技术的平均减排成本为124元/tCO2,2020年实现总减排量3043万t,总减排成本为10.3亿元;在保持技术水平和排放水平不变的情况下,2035年17项减排技术可实现总减排量21307万t,总减排成本为103.4亿元。2)在各项减排技术中,集成模块化窑衬节能技术与水泥熟料烧成系统优化技术,具有较高减排潜力和较低减排成本,适合广泛推广;CO2捕集利用与封存(CCUS)技术虽具有较高减排成本,但是未来减排潜力较大,应给予重视。3)技术普及率与熟料产量是决定减排潜力的重要因素,因此未来水泥行业应注重节能减排政策技术推广与产业结构调整,可进一步实现减排目标。  相似文献   

18.
碳达峰碳中和是我国的重大战略决策,对推进产业转型升级和绿色发展具有重要意义. 实现经济增长与资源能源消耗、污染物和碳排放的总量与强度双控制,是推进“双碳”目标的重要支撑. 我国沿海地区制造业发达,污染物和碳排放量较大,寻找减污降碳协同增效路径对区域绿色转型具有重大现实意义. 本文以浙江省宁波市为对象,对全部经济门类的产业结构开展实证研究,运用多准则决策模型和情景分析法,以能源、水资源、4种主要污染物(化学需氧量、氨氮、二氧化硫、氮氧化物)和二氧化碳为约束条件建立了产业结构优化调整模型,将各产业增加值占比的变化程度作为决策变量,筛选出产业结构调整平稳、减排幅度大的调整方案. 制造业作为宁波市经济发展的主体,贡献了较高比例的污碳排放和能源资源消耗. 4.5%、5.5%、6.5%三种年均经济增速情景下宁波市通过产业结构调整实现减污降碳协同增效的潜力分析显示,2020—2030年预期可实现累计97%的经济增长,且能满足区域资源环境的约束限制. 面向2030年提出宁波市产业结构优化调整路径,建议严格控制高排放制造业的准入门槛,提升第一产业和采矿业的资源能源利用效率,推进电力、热力的生产与供应业等存量行业的减污降碳,鼓励发展高附加值的第三产业和循环经济产业.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号