首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
成都双流夏秋季环境空气中VOCs污染特征   总被引:5,自引:4,他引:1  
邓媛元  李晶  李亚琦  吴蓉蓉  谢绍东 《环境科学》2018,39(12):5323-5333
为了解成都市大气污染重点防治区域——双流地区的环境大气中挥发性有机物(VOCs)的污染特征和来源,2016年8月30日~2016年10月7日,VOCs外场观测在成都市双流区展开.结果表明,在线观测期间,采样站点总的大气挥发性有机物(TVOCs)的平均体积分数为(45. 15±43. 74)×10-9,其中烷烃的贡献最大(29%),其次是芳香烃(22%)、卤代烃(17%)、含氧挥发性有机物(OVOCs,15%)、烯烃(9%)、乙炔(7%)、乙腈(1%);优势物种为丙酮、二氯甲烷、乙炔、乙烯、苯、甲苯、间/对-二甲苯、丙烷、1,2-二氯乙烷以及丁酮.通过比较VOCs的化学反应消耗速率发现,反应活性最大的为芳香烃,其次是烯烃;反应活性最强的物种为苯乙烯、间/对-二甲苯、异戊二烯、乙烯等.整个观测期间,有两次明显的生物质燃烧活动.国庆假日期间,TVOCs浓度相比之前明显上升,平均体积分数达57. 65×10-9,其中,短链烯烃、卤代烃以及OVOCs浓度上升最为显著.分析某些关键的非甲烷总烃(NMHCs)和OVOCs的日变化特征发现,其变化规律反映了双流地区不同源排放特点.双流区环境空气中VOCs受本地工业源排放影响较大.  相似文献   

2.
为了解成都市大气污染重点防治区域——双流地区的环境大气中挥发性有机物(VOCs)的污染特征和来源,2016年8月30日~2016年10月7日,VOCs外场观测在成都市双流区展开。结果表明,在线观测期间,采样站点总的大气挥发性有机物(TVOCs)的平均体积分数为(45.15±43.74)?10-9,其中烷烃的贡献最大(29%),其次是芳香烃(22%),卤代烃(17%),含氧挥发性有机物(OVOCs)(15%)、烯烃(9%)、乙炔(7%)、乙腈(1%);优势物种为丙酮、二氯甲烷、乙炔、乙烯、苯、甲苯、间/对二甲苯、丙烷、1,2-二氯乙烷以及丁酮。通过比较VOCs的化学反应消耗速率发现,反应活性最大的为芳香烃,其次是烯烃;反应活性最强的物种为苯乙烯、间/对二甲苯、异戊二烯、乙烯等。整个观测期间,有两次明显的生物质燃烧活动。国庆假日期间,TVOCs浓度相比之前明显上升,平均体积分数达57.65?10-9,其中,短链烯烃、卤代烃以及OVOCs浓度上升最为显著。分析某些关键的非甲烷总烃(NMHCs)和OVOCs的日变化特征发现,其变化规律反映了双流地区不同源排放特点。双流区环境空气中VOCs受本地工业源排放影响较大。  相似文献   

3.
西南典型区域夏季大气含氧挥发性有机化合物来源解析   总被引:4,自引:1,他引:3  
含氧挥发性有机物(OVOCs)是大气光化学过程中的重要中间产物,是臭氧的重要来源之一.利用质子转移反应飞行时间质谱仪(PTR-TOF-MS)在成都平原对OVOCs进行观测,探讨其日变化特征、光化学反应活性、臭氧生成潜势和来源.结果表明,10个VOCs[乙醛、丙酮、异戊二烯、甲基乙基酮(methyl ethyl ketone,MEK)、甲基乙烯基甲酮(methyl vinyl ketone,MVK)、甲基丙烯醛(methacrolein,MACR)、苯、甲苯、苯乙烯、C8芳香烃和C9芳香烃]总浓度(体积分数)为(10.97±4.69)×10-9,OVOCs为(8.54±3.44)×10-9,芳香烃为(1.53±0.93)×10-9,生物源VOCs为(0.90±0.32)×10-9;光化学活性和臭氧生成潜势均排名前三的物种为:异戊二烯、乙醛和C8芳香烃;3个OVOCs物种(乙醛、丙酮和MEK)主要来源于本地生物源和人为二次源,且丙酮有较强的区域背景值,说明该地区的污染受到较为显著的区域传输的影响.本研究可加深对西南地区臭氧的区域形成机制的认识,为科学管控臭氧污染提供依据.  相似文献   

4.
选取上海市某工业区内专项化学品制造行业中有代表性的10家企业,使用苏玛罐对各企业有组织排放废气进行采样,通过GC-MS(气相色谱-质谱联用仪)对106种VOCs进行分析,研究了专项化学品制造行业的VOCs排放特征,并使用MIR(最大增量反应活性)法计算了各企业排放VOCs对臭氧生成的贡献.结果表明:OVOCs(含氧挥发性有机物)和芳香烃是专项化学品制造行业的VOCs特征组分,OVOCs与芳香烃质量分数之和为65.0%~100.0%;8家企业排放的VOCs中质量分数最高的物种均为OVOCs,w(OVOCs)为55.8%~99.9%.异丙醇、四氢呋喃、丙酮、乙酸乙酯等OVOCs及苯、甲苯等芳香烃是专项化学品制造行业的特征物种.10家企业排放VOCs的OFP(臭氧生成潜势)为1.9~933.5 mg/m 3,OVOCs和芳香烃是专项化学品制造企业的主要活性组分,累计对OFP的贡献率在80.1%~100.0%之间.异丙醇、四氢呋喃、丙酮、乙酸乙酯、甲基异丁基酮、苯和甲苯等是专项化学品制造行业的关键活性物种.研究显示,专项化学品制造行业VOCs污染治理应重点控制OVOCs和芳香烃.   相似文献   

5.
2014年在北京市城市对照点定陵(城市背景点)、东四(城区点)和永乐店(东南区域传输点)3个不同功能站点进行了为期一年的大气挥发性有机物连续自动观测,测定了包括含氧VOCs在内的98种挥发性有机物,系统分析了北京地区大气VOCs的组成特征、时空分布特征及大气化学活性.结果表明,北京市大气VOCs的年均体积分数为(47.36±13.78)×10-9,化学组成以烷烃为主,占39.55%,其次是OVOCs,再次是烯烃和芳香烃.中心城区点和东南区域传输点的VOCs浓度水平显著高于城市背景点.中心城区点VOCs受交通源和生活燃气排放影响显著,东南区域传输点受交通源和工业溶剂源影响显著,而城市背景点则受上风城区传输影响大.总VOCs浓度季节变化整体表现为冬高、夏低的特点.受污染来源的差异影响,不同点位的不同组分表现出并不相同的日变化特征.甲苯/苯的比值分析显示,北京地区冬季采暖期燃煤影响突出,春夏季溶剂挥发贡献增加.北京VOCs大气化学活性以烯烃为主,其次是芳香烃和OVOCs,关键活性组分有乙烯、乙醛、间/对-二甲苯、甲苯、丙烯、邻-二甲苯、乙苯、正丁烷、1-丁烯和丙醛等.  相似文献   

6.
《环境科学与技术》2021,44(2):57-65
该研究选取深圳市工业区、城区、郊区等不同类型的5个典型地区在2017年8月(夏季)、10-11月(秋季)、12月(冬季)开展了挥发性有机物(VOCs)离线手工采样及监测,获得了113种VOCs物种的体积分数数据并分析了VOCs污染特征及臭氧生成潜势(OFP)。研究表明,观测期间深圳市VOCs平均体积分数为37.3×10~(-9),以含氧挥发性有机物(OVOCs)和烷烃为主要组分,共占总体积分数的57.2%。秋冬季体积分数约为夏季的2倍,日变化上烷烃、烯烃、芳香烃体积分数在中午达到谷值,较早晚平均值偏低46.7%~48.3%,但OVOCs日变化曲线较为平缓。观测期间VOCs的OFP平均为121.2×10~(-9),OVOCs、烯烃和芳香烃是主要贡献来源,分别占42.0%、33.0%和15.3%,1,3-丁二烯、丙醛、乙醛、甲苯是对OFP贡献最大的前4个物种,共占55.8%。工业排放对臭氧生成影响显著,工业区点位OFP较高(182.2×10~(-9)),城区次之(98.6×10~(-9)),郊区最低(68.9×10~(-9)),同时工业区甲苯/苯(T/B)比值较高(10.7),表明受溶剂使用源的影响较大。加强控制溶剂使用源、工业源和机动车的VOCs排放将有利于降低深圳市大气OFP,从而减少臭氧生成。  相似文献   

7.
挥发性有机物(VOCs)是对流层大气的关键化学组分,其中工业排放是VOCs的重要来源之一.于2021年夏初在中国珠江三角洲的典型工业地区中开展了74种VOCs的在线观测.在整个观测期间,总挥发性有机物(TVOC)的体积分数平均值为(81.9±45.4)×10-9.其中,含氧挥发性有机物(OVOCs)在TVOC中的占比最大,平均值为51.5%,并且其占比随TVOC体积分数的升高而逐渐增大.芳香烃在TVOC中的占比为19.4%.进一步分析发现,与工业活动相关的排放是工业区环境大气中芳香烃与OVOCs的主要来源.芳香烃和OVOCs对臭氧生成潜势(OFP)的贡献最为显著,在总OFP中的贡献率分别为56.4%和26.7%.此外,与烃类组分相比,OVOCs的大气化学活性同样较高,贡献了大气中总·OH反应活性的40.0%.二甲苯、甲苯、丙烯醛和乙酸乙酯对二次污染形成的贡献较大,在制定大气二次污染管控策略时应优先考虑.研究结果强调了工业地区中OVOCs对TVOC的重要贡献以及OVOCs在大气二次污染形成过程中的重要作用.  相似文献   

8.
为了解邢台市不同行业企业挥发性有机物(VOCs)污染特征,通过Summa罐采集样品,采用预浓缩-气质联用仪系统(GC-MS/FID)进行测定分析,探究不同行业VOCs特征组分变化,并分析了VOCs排放对OFP(臭氧生成潜势)贡献影响.结果表明:①光伏元件制造、木材深加工及印刷行业排放的VOCs中以OVOCs(含氧挥发性有机物)为主,其占比在52.7%以上,特征物种为异丙醇、丙酮及乙酸乙酯等;玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中以芳香烃为主,占比为36.7%~93.8%,特征物种为间/对-二甲苯、邻-二甲苯和对-二乙基苯等.②玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中对OFP贡献较大组分为芳香烃,占比为88.3%~98.2%,活性物种为间/对-二甲苯、甲苯及邻-二甲苯等C7~C9的苯系物;光伏元件制造和印刷行业排放的VOCs中对OFP贡献较大的组分为OVOCs,占比为92.8%~95.2%,活性物种为异丙醇、乙酸乙酯及甲基乙基酮等;木材深加工行业排放的VOCs中对OFP贡献较大的组分为OVOCs和烯烃,占比分别为39.0%~53.4%和23.0%~25.3%,活性物种主要为丙酮、甲基乙基酮及1-丁烯等.研究显示,邢台市玻璃深加工和汽车表面喷涂企业中芳香烃对OFP影响较大,其次是印刷企业,亟需优先加强管控.   相似文献   

9.
为摸清郑州市冬春季大气挥发性有机物(VOCs)污染特征及来源,对VOCs的浓度变化、SOAP(二次有机气溶胶生成潜势)及来源进行探究。结果表明,郑州冬春季VOCs平均浓度为45.05×10~(-9),其中烷烃20.62×10~(-9),含氧有机物(OVOCs)5.50×10~(-9),炔烃5.27×10~(-9),卤代烃5.15×10~(-9),烯烃5.05×10~(-9),芳香烃3.46×10~(-9);浓度排名前5物种为乙烷8.72×10~(-9)、乙炔5.27×10~(-9)、丙烷4.57×10~(-9)、乙烯3.77×10~(-9)、丙酮3.52×10~(-9)。观测期间上午09时VOCs浓度高于下午14时,VOCs与PM2.5呈明显正相关,冬春季高湿、高温、静稳等天气条件易引起本地VOCs和PM2.5累积和转化。郑州市SOAP为0.74μg/m~3,芳香烃占97.92%,对SOAP贡献较大的前5物种为甲苯、乙苯、间/对二甲苯、苯和邻二甲苯。运用正交矩阵因子(PMF)模型解析出郑州市冬春季VOCs来源为燃煤+生物质燃烧占27.1%、工业溶剂占12.6%、溶剂涂料使用占6.3%、机动车尾气排放占38.2%、燃料挥发占15.8%。建议后期郑州市冬春季重点关注机动车、燃煤及生物质燃烧源排放。  相似文献   

10.
采用排放因子法建立了2016年兰州市生物质燃烧源挥发性有机物(VOCs)排放清单,并分析了污染物的时空排放特征,利用排放清单对生物质燃烧源的臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势进行了估算,研究其排放对大气环境的影响.结果表明:2016年兰州市生物质燃烧源排放VOCs总量为6626.2t,排放高值区在榆中东南及东北部、永登中部和七里河南部,经济水平落后、秸秆产量大的地区污染物排放量更大.污染物排放集中在采暖季(11~3月)及农作物收割期(7~8月);兰州市生物质燃烧源的OFP总量为13880.3t,煨炕为OFP贡献最大的子源,占比46.1%,含氧挥发性有机物(OVOCs)为OFP贡献最大的关键组分,占比51.4%;OFP贡献排名前10的物种有乙酸、丙烯、2-丁酮、甲苯、甲醛、乙醛、间/对-二甲苯、1-丁烯、丙酸和异戊二烯.煨炕是SOA生成潜势贡献最大的子源,占比46.5%,芳香烃为SOA生成潜势贡献最大的关键组分,占比62.2%,SOA生成潜势贡献排名前10的物种有苯酚、甲苯、α-蒎烯、间/对-二甲苯、苯、邻二甲苯、茚、1,2,4-三甲基苯、乙苯和1,2,3-三甲基苯;以降低区域O3和SOA浓度为目标时,应优先管控煨炕和秸秆露天燃烧(玉米)两类子源.  相似文献   

11.
采用质子转移反应质谱仪(PTR-MS)对深圳大学城园区2017年不同季节(分干湿两季)的6种典型OVOCs和其他非甲烷烃类(NMHCs)进行连续在线监测,分析其干湿季的浓度特征与日变化规律,并应用光化学龄的参数化方法开展OVOCs的来源解析.结果表明,在观测的6种OVOCs中,甲醇的平均浓度最高,达10×10-9~12×10-9,其次是乙酸、丙酮和乙醛,约2~5×10-9,甲酸和丁酮的含量最低,仅1×10-9~2×10-9.通过日变化观察到的OVOCs湿季峰值浓度时间明显早于干季,乙醛表现出与臭氧(O3)相似的日变化特征,揭示了其可能存在二次来源;甲醇和丁酮的峰值浓度时间均早于O3,可能存在重要的一次排放源.采用光化学龄模型解析出日间污染物来源比例:在污染较重的干季,甲醇、乙醛、丙酮和丁酮的人为一次源占主导,甲酸和乙酸的二次源是主要贡献者;在较清洁的湿季,天然源成为乙醛、丙酮、丁酮、甲酸和乙酸的主要来源.  相似文献   

12.
2020年8月底至9月初,重庆市主城区发生了持续时间近2周的O3污染过程.期间,在主城区3个观测站点利用苏玛罐和DNPH采样柱采集的环境空气VOCs样品,研究了O3污染期间VOCs组分特征、光化学反应活性及来源解析.结果表明,观测期间重庆市主城区TVOCs平均体积分数为45.08×10-9,各组分体积分数排序依次为OVOCs、烷烃、卤代烃、烯烃、芳香烃和炔烃.体积分数较高的VOCs物种是甲醛、乙烯和丙酮,三者之和占比TVOCs超过30%.OVOCs和烯烃对· OH消耗速率(Li·OH)和臭氧生成潜势(OFP)均具有较大的贡献,是生成O3的关键VOCs组分;其中,OVOCs组分中主要的活性物种为甲醛、乙醛和丙烯醛,烯烃组分中主要的活性物种为异戊二烯、乙烯和正丁烯.VOCs中二甲苯与乙苯的比值较低,并且两者呈现显著的相关性,表明主城区大气中VOCs气团老化程度高,同时还受到其他区域远距离传输的影响.PMF受体模型解析结果显示,主要有5种VOCs来源,依次为二次生成源(27.67%)、机动车尾气源(26.56%)、工业排放源(17.86%)、植物源(14.51%)和化石燃料燃烧源(13.4%).  相似文献   

13.
分别采集了医院和实验室环境空气样品,通过GC-MS/FID对样品进行定性分析.共定性检测出116种挥发性有机物(VOCs).在这两类环境中检出频次较高的VOCs物种包括乙烷、丙烷、正丁烷等烷烃;乙烯、丙烯、1-丁烯等烯烃;苯、甲苯、乙苯等芳香烃;氯甲烷、二氯甲烷等卤代烃和丙酮等含氧有机物.在实验室中经常使用的试剂如正己烷、甲苯、乙醇、丙酮等呈现较高的水平,高于室外1~3个数量级.在医院的部分候诊区中检出较高浓度的甲苯、乙苯、二甲苯,需要引起关注.  相似文献   

14.
南京北郊工业乡村混合区秋季边界层VOCs垂直分布特征   总被引:1,自引:0,他引:1  
利用2020年秋季南京北郊低对流层(0~1 000 m)VOCs探空实验数据,分析了该地区VOCs垂直廓线分布及其日变化、光化学反应性等特征.结果表明,φ(VOCs)随高度升高而降低(72.1×10-9±28.1×10-9~56.4×10-9±24.8×10-9).各高度上烷烃占比最大(68%~75%),其次为芳香烃(10%~12%)、卤代烃(10%~11%)、烯烃(3%~7%)和乙炔(2%).边界层日变化对VOCs廓线影响较大,早晚较低的边界层致使VOCs在近地面累积,而在上部体积分数较低;午后VOCs的垂直分布则较均匀.上午光化学反应性强(弱)的烯烃(烷烃)等的体积分数占比随高度升高而减小(增加),说明高层的VOCs光化学老化显著.午后VOCs各组分占比及其OFP在低对流层内垂直分布则较均匀.受周边不同来源气团影响,各高度φ(VOCs)及组分占比差异明显,工业气团在200~400 m;高度间φ(VOCs)随高度升高,芳香烃占比增大;城区气团φ(VOCs)垂直负梯度最大,近地面φ(VOCs)较高,...  相似文献   

15.
2015年北京大气VOCs时空分布及反应活性特征   总被引:10,自引:9,他引:1  
张博韬  安欣欣  王琴  闫贺  刘保献  张大伟 《环境科学》2018,39(10):4400-4407
2015年在北京市城区东四、东南边界点永乐店、以及背景点定陵进行了全年连续VOCs监测,其中市区的大气VOCs年均摩尔分数为(48.93±31.03)×10-9,东南边界的年均摩尔分数为(54.55±39.64)×10-9,背景点定陵年均摩尔分数为(28.25±21.26)×10-9.组分中烷烃占比最高,之后依次是含氧VOCs,烯烃、芳香烃、卤代烃和乙炔等物质.VOCs浓度整体呈现冬天高,夏天低,夜间高,白天低的特点.城区乙炔在春、夏、秋季浓度较高,冬季东南边界点乙炔浓度较高.在人为源干扰较小的背景点,含氧VOCs每天的中午以及每年的夏天阳光充足时浓度较高.VOCs中年均摩尔分数较高的物种主要是乙烷、乙炔、乙烯、乙醛、丙烷、丙酮、正丁烷、二氯甲烷等低碳物质.高碳物质中苯和甲苯年均摩尔分数相对较高.从甲苯/苯比值发现北京VOCs除交通源外受到其他多种源的共同影响.而乙烷/乙炔比值发现北京受到气团老化影响较严重,尤其东南边界受到周边老化气团传输的影响较大.从异戊烷占总VOCs比例变化上发现夏季高温使汽油挥发情况比其他季节严重.从活性上分析,东南边界的臭氧生成潜势最高,市区其次,定陵较低.对臭氧生成潜势贡献较大的物种是乙烯、丙烯、乙醛、间/对-二甲苯和甲苯,而摩尔分数较高的烷烃对臭氧生成潜势贡献不大.  相似文献   

16.
High values of ozone (O3) occur frequently in the dry spring season; thus, understanding the evolution characteristics of volatile organic compounds (VOCs) in spring is of great significance for preventing O3 pollution. In this study, a total of 101 VOCs from April 16 to May 21, 2019, were quantified using an online gas chromatography mass spectrometer/flame ionization detector (GCMS/FID). The results indicated that the observed concentration of total VOCs (TVOCs) was 30.4 ± 17.0 ppbv, and it was dominated by alkanes (44.3%), followed by oxygenated VOCs (OVOCs) (17.4%), halocarbons (12.7%), aromatics (9.5%), alkenes (8.2%), acetylene (5.3%) and carbon disulfide (2.5%). The average mixing ratio of VOCs showed obvious diurnal variation (high at night, low during daytime). We conducted a source apportionment study based on 32 major VOCs using positive matrix factorization (PMF), and coal + biomass burning (25.2%), diesel exhaust (16.0%), gasoline exhaust + evaporation (17.4%), secondary + long-lived species (16.7%), biogenic sources (4.3%), industrial emissions (9.3%) and solvent use (11.2%) were identified as major sources of VOCs. In addition to local emissions, most of the atmospheric VOCs were derived from long-distance air masses (65.7%), and the average mixing ratio of VOCs in the northwest direction was 29.4 ppbv. Combined with the results of the potential source contribution function (PSCF) indicate that research should focus on the local emissions of combustion, transportation sources and solvents usage to control atmospheric VOCs. Additionally, transmission of the northwest air mass is an important component that cannot be ignored during spring in Beijing.  相似文献   

17.
基于调研文献测试数据,对不含含氧有机物(oxygenated volatile organic compounds,OVOCs)组分的源成分谱进行修订和重构,得到归一化的VOCs源成分谱,根据2015年四川省大气污染源排放清单建立了基于源成分谱的1 km×1 km VOCs组分排放清单,并估算其臭氧生成潜势以评估对臭氧生成的影响.所建立的VOCs源成分谱库包括45个源成分谱和519种组分,由于针对富含OVOCs的生物质燃烧和汽车排放等源类进行了修订和重构,因此所建立的源成分谱库对于VOCs组分清单构建和源解析具有更好地应用性.VOCs组分清单结果表明,四川省人为源VOCs总排放量为773.8 kt,其中烷烃、烯烃、炔烃、芳香烃、OVOCs、卤代烃和其它VOCs分别占VOCs总排放量的21.6%、10.0%、1.7%、28.0%、26.2%、4.2%和8.3%,总臭氧生成潜势(ozone formation potential,OFP)为2584.9 kt,上述各类VOCs分别占总OFP的6.9%、26.1%、0.5%、42.3%、23.2%、0.4%和0.5%.四川省各城市VOCs排放组分均以芳香烃、OVOCs和烷烃为主,但亦存在显著差异:成都、雅安、阿坝、甘孜和凉山机动车排放贡献较大,烷烃排放量占VOCs排放总量的比例较高;攀枝花为工艺过程源贡献较大的重工业城市,烷烃排放量占比较高;德阳、眉山、遂宁和资阳溶剂使用源排放较大,OVOCs排放量占比较高.四川省VOCs排放量和OFP较大的组分主要集中分布于人口和工业较为密集和发达的四川盆地区域以及凉山和攀枝花的部分地区,其中间-二甲苯和甲苯主要贡献源为溶剂使用源,导致其在城市建成区的分布更为集中,生物质燃烧对乙烯和甲醛排放有大量贡献,造成其在农业发达的川东和川南的耕地区域有大量分布.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号