首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.   相似文献   

2.
为深入了解保定市空气质量状况,揭示PM2.5与臭氧(O3)的变化特征及相互关系,利用小波分析法对保定市2013—2020年每年4—9月AQI、PM2.5、O3-8 h (O3日最大8 h滑动平均值)和NO2浓度的逐日数据进行分析. 结果表明:①2013—2018年保定市O3污染呈逐年加重趋势,最大日浓度达到347 μg/m3;随着治理措施的颁布与实施,PM2.5超标天数由2013年的97 d减至2020年的1 d,PM2.5超标情况逐年改善. ②O3超标天数由2013年的3 d增至2018年的95 d,2020年减至61 d;O3超标天数占PM2.5和O3超标总天数的比例从2013年的3%增至2020年的98%,说明O3逐渐成为影响保定市空气质量的主要污染物. ③2013年保定市O3-8 h浓度低于“2+26”城市均值,2014—2020年O3-8 h浓度高于或接近“2+26”城市均值,说明近年来保定市O3-8 h浓度的升幅已超过“2+26”城市的平均水平. ④小波分析发现,2013—2020年(除2015年和2018年外)AQI与PM2.5污染序列的第1主周期相近,从2017年开始,AQI与O3-8 h污染序列的第1主周期和第2主周期均一致,说明近年来保定市空气污染逐渐由PM2.5污染转为PM2.5与O3复合污染. ⑤在同一时间尺度范围内,PM2.5与O3-8 h污染序列的震荡频率基本一致,说明二者存在较明显的正相关关系;2015—2019年,NO2与O3-8 h污染序列的震荡频率趋于一致,说明保定市O3-8 h浓度受前体物NO2影响较大,2020年震荡频率有较大差异,这可能与新冠肺炎疫情复工后生产规模尚未完全恢复,致使NO2、PM2.5等污染物排放强度同比降低有关. 因此,减少NO2排放,协同控制多污染物是实现保定市空气质量改善的主要途径.   相似文献   

3.
选取兰州市城区4个环境空气质量国控站点2018-2019年的监测数据和兰州市气象站同期的观测资料,分析了兰州市O3浓度的时空分布特征,并探讨了气象因素和相关污染物对ρ(O3-8 h)的影响。结果表明:1)兰州市城区各站点ρ(O3-8 h)的月变化和ρ(O3)小时值的日变化均呈单峰型,ρ(O3-8 h)高值出现在4-8月,ρ(O3)小时峰值出现在15:00左右;2)相关污染物与ρ(O3-8 h)均呈负相关,ρ(O3-8 h)随ρ(NO2)、ρ(CO)、ρ(PM2.5)的增加而降低;3)高温、低湿的环境有利于兰州市城区O3的生成,而特殊的地形条件导致在一定风速下,O3更容易积累;4)分别建立了相关污染物和气象因子的多元线性回归方程,发现在当前气象条件和相关污染物排放现状下,气象因子对兰州市O3的影响比相关污染物的影响更为重要。  相似文献   

4.
细颗物(PM2.5)和臭氧是我国主要的大气污染物,严重危害人群健康.为评估成都市大气污染防治行动实施期间PM2.5和臭氧对人群健康的影响,首先,利用流行病学中的广义相加模型和非线性分布滞后模型估算了2014~2016年成都市PM2.5和臭氧最大8 h滑动平均(O3-8h)浓度变化对居民疾病死亡影响的暴露-反应关系系数(β),在此基础上,采用环境风险和环境价值评估法估算2016~2020年成都市PM2.5和O3-8h浓度暴露水平变化的健康收益.结果表明:(1)2016~2020年成都市的ρ(PM2.5)年均值呈逐年下降趋势,从63μg·m-3降至40.92μg·m-3,年均下降率约为10.14%;与之相反,ρ(O3-8h)年均值从155μg·m-3升至169μg·m-3,年均增长率约为2.23%.(2)成都市PM2.5...  相似文献   

5.
为了探明近年来中国典型城市群(京津冀城市群、长三角城市群和珠三角城市群)臭氧(O3)污染的发生规律,利用2005—2020年OMI-MLS (臭氧监测仪-微波临边探测器)对流层O3柱总量探测数据以及2015—2020年地面O3浓度监测数据分析我国三大城市群O3的时空分布特征及其演变趋势,结果表明:①对流层O3柱总量月峰值和年均值均呈京津冀城市群>长三角城市群>珠三角城市群的特征,京津冀和长三角城市群对流层O3柱总量均在夏季〔分别为50.0和44.4 DU (dobson unit)〕最高,而珠三角城市群在春季(42.2 DU)最高. ②三大城市群对流层O3柱总量在空间分布上具有不同的特征,京津冀城市群对流层O3柱总量呈东南高于西北的特征,长三角城市群对流层O3柱总量随纬度升高而增大,珠三角城市群对流层O3柱总量南北局地差异较小;海拔对对流层O3柱总量的空间分布有一定影响,海拔越高,对流层O3柱总量越低. ③京津冀、长三角和珠三角城市群对流层O3柱总量均呈逐年显著升高的趋势,年均增长量分别为0.25、0.28和0.27 DU,其中,京津冀城市群在对流层O3柱总量较低的秋冬季年均增长(0.29 DU)最快,而长三角和珠三角城市群分别在对流层O3柱总量最高的夏季和春季增长最快,均为0.39 DU. ④卫星探测的对流层O3柱总量与地面监测的O3日最大8 h滑动平均浓度(简称“O3-8 h浓度”)在京津冀和长三角城市群相关性明显,而在珠三角城市群相关性较差. ⑤O3-8 h浓度呈京津冀城市群>长三角城市群>珠三角城市群的特征,其中,京津冀城市群O3-8 h浓度在2018年(110.9 μg/m3)最高,空间上由2016年之前的北高南低转变为南高北低,多数城市O3污染较重且达标率较低;长三角城市群2017年O3-8 h浓度(106.7 μg/m3)最高,2016年起O3-8 h高浓度中心由东北逐渐向西部内陆迁移,沿海城市达标率增加;珠三角城市群O3污染程度最轻,达标城市较多,但O3-8 h浓度呈逐年上升趋势,并在2019年达最高值(100.4 μg/m3),且中心城市上升速率远大于外围城市. 研究显示,中国三大城市群对流层O3柱总量和O3-8 h浓度的时空分布特征存在显著差异,造成差异的因素也不同.   相似文献   

6.
牛笑笑  钟艳梅  杨璐  易嘉慧  慕航  吴倩  洪松  何超 《环境科学》2023,44(4):1830-1840
基于2015~2020年中国333个城市PM2.5和O3浓度监测数据,利用空间聚类、趋势分析和地理重力模型等方法,定量分析我国主要城市的PM2.5-O3复合污染特征和时空演变格局.结果表明:(1) PM2.5和O3浓度存在协同变化规律,当ρ(PM2.5_mean)≤85μg·m-3时,ρ(PM2.5_mean)和ρ(O3_perc90)存在同步增长的现象;当ρ(PM2.5_mean)处于国家Ⅱ级限值(35±10)μg·m-3时,ρ(O3_perc90)平均值的峰值增速最快;当ρ(PM2.5_mean)>85μg·m-3时,ρ(O3_perc90)平均值出现显著下降趋势.(2)我国城市PM2.5和O3  相似文献   

7.
为探究天津市各季节PM2.5与O3污染的非本地源贡献情况,本文以2017—2019年为研究时段,应用HYSPLIT模型,基于MeteoInfo软件对不同季节气流后向轨迹进行聚类分析,通过计算潜在源贡献因子(potential source contribution function, PSCF)、浓度权重轨迹(concentration-weighted trajectory, CWT)对天津市PM2.5与O3污染的外来潜在源区以及可能的污染传输途径进行研究. 结果表明:①天津市PM2.5和O3污染均较为严重,且具有明显季节性特征. 天津市各季节的气流变化明显,春、秋两季以西南方向气流为主,夏季以来自渤海的气流为主,冬季则以西北方向气流为主. ②天津市西南方向气流在各季节对应的污染物浓度均较高,春、秋两季西南方向气流携带的ρ(PM2.5)和O3浓度8 h滑动平均值〔简称“ρ(O3-8 h)”〕均最高;夏季,西南方向气流携带的ρ(O3-8 h)最高;冬季,西南方向轨迹携带的ρ(PM2.5)最高. ③西南方向上河北省南部的邯郸市,山东省西部的菏泽市、聊城市,以及河南省北部的开封市、濮阳市、新乡市均为天津市PM2.5与O3污染的主要潜在源区. 此外,冬季张家口市和唐山市对天津市PM2.5污染的潜在影响也较大. 冬季影响天津市PM2.5污染的外来潜在源区情况较为复杂,除西南气流外,其还受西北部与东部气流的影响. 研究显示,天津市大气污染区域联防联控需重点关注河北省南部、河南省北部以及山东省西部城市的潜在输送影响.   相似文献   

8.
为探究云浮市颗粒物和臭氧(O3)污染特征,利用多元统计分析方法分析了云浮市2018—2020年6项环境空气污染物浓度、气象因子等监测数据,并对2020年12月25—29日冬季PM2.5和O3污染过程进行了研究. 结果表明:①PM2.5、PM10、NO2、CO月均浓度呈夏季低、冬季高的变化特征;O3-8 h第90百分位数呈夏秋季高、冬春季低的变化特征. ②PM10、PM2.5和CO小时浓度日变化呈波浪型变化特征,PM2.5、CO小时浓度最大值均出现在09:00,PM10小时浓度最大值出现在02:00. O3、SO2小时浓度日变化呈单峰型变化特征,O3、SO2小时浓度最大值分别出现在16:00、10:00. NO2小时浓度日变化呈单谷型变化特征,最小值出现在14:00. ③PM2.5-10、SO2、NO2、O3小时浓度与PM2.5小时浓度均呈正相关,说明PM2.5-10、SO2、NO2、O3与PM2.5具有一定程度的同源性. O3小时浓度与NO2、CO小时浓度呈负相关,且O3小时浓度与NO2小时浓度相关性更强. 夏秋季NO2、CO、O3、PM2.5小时浓度与气温的相关性比冬春季的更强. SO2、PM10、PM2.5、O3小时浓度均与湿度呈负相关,其中O3小时浓度与湿度的相关性最强,相关系数为?0.586. ④2020年12月25—29日云浮市城区PM2.5污染受到静稳天气影响,O3污染与28日午后太阳高温辐射以及来自珠三角地区O3污染气团的输入影响有关. 利用ART-2a对该时段采集的颗粒物进行成分分析,得到K、EC、OC、ECOC、HM、LEV、Na、SiO3这8种单颗粒物. 整个时段EC、OC、ECOC谱图中都存在明显的硫酸盐峰和硝酸盐峰. PM2.5小时浓度与硫酸盐离子、硝酸盐离子、硅酸盐离子、铵离子、氯离子的数量均呈显著正相关,二次反应和老化过程对PM2.5污染有显著影响. 研究显示,云浮市PM2.5和O3复合污染防控需要关注本地污染物变化特征和排放源影响,也需关注外来污染气团特别是来自珠三角地区污染气团输入的影响.   相似文献   

9.
为定量化评估不同地区对肇庆市污染物输送影响,分析了2014—2018年肇庆市ρ(PM2.5)和ρ(O3-8 h)(O3-8 h为O3日最大8 h滑动平均值)的变化特征,并基于HYSPLIT模式计算不同季节后向气流轨迹,通过聚类分析、潜在源贡献因子和浓度权重轨迹方法对肇庆市外来污染物的输送路径和潜在源区进行分析.结果表明:①2014—2018年肇庆市ρ(PM2.5)年均下降3.3 μg/m3,2016年开始ρ(PM2.5)最大值逐年增大.ρ(PM2.5)日变化呈双峰型,峰值分别出现在上、下班高峰期后.2016年起ρ(O3-8 h)年均增加4.4 μg/m3,成为肇庆市首要空气污染物.ρ(O3)日变化呈单峰型,于15:00—16:00达到峰值.②PM2.5和O3污染分别在冬季和秋季较严重,超标日分别达20.6和15.0 d.ρ(PM2.5)与风速相关性最高,ρ(O3-8 h)与日照时数和相对湿度相关系数均较高.③春、夏两季影响肇庆市的气流近80%来自南部海面和东北方向,秋、冬两季85%以上气流源自偏东和偏北方向,肇庆市PM2.5和O3污染除受本地排放影响外,还有来自珠三角、广东省北部及其东部沿海、江西省等地区的输送贡献.研究表明,肇庆市PM2.5和O3污染均较严重,区域联防联控需重点关注广东省中东部城市的外来输送影响.   相似文献   

10.
近年来,我国面临着细颗粒物(PM2.5)污染形势依然严峻以及臭氧(O3)污染日益凸显的双重压力.为进一步准确预测郑州市大气PM2.5与O3浓度并探明气象因子的影响,本研究使用2018-2022年郑州市大气污染物和气象因子逐时数据,结合统计学单因素分析和机器学习LightGBM模型多因素分析,建立了一种基于长时间序列数据的PM2.5与O3浓度预测及气象因子影响分析的综合分析方法.结果表明:(1)训练后的LightGBM模型能够较好地预测PM2.5污染,准确率达80.8%;对O3污染预测的准确率为52.5%.(2)郑州市大气PM2.5浓度与气压呈正相关,与比湿和环境温度均呈负相关;大气O3 8 h滑动平均浓度(O3-8 h浓度)与比湿和太阳辐射均呈正相关,与气压呈负相关.(3)有利的气象条件可能是2021年PM2.5年均浓度得到显...  相似文献   

11.
基于2019年3月~2020年2月环境空气质量监测数据,分析了运城市PM2.5污染的时空分布特征,并利用HYSPLIT后向轨迹模型和聚类分析等方法探讨不同季节运城市PM2.5污染的输送路径和潜在源区.结果表明,运城市ρ(PM2.5)冬季最高(111.24μg·m-3),夏季最低(30.02μg·m-3),PM2.5/PM10秋冬季均大于0.6,表明运城市秋冬两季颗粒物污染以细颗粒物为主;空间上ρ(PM2.5)年均值呈现北部和中部高、东部和西部低的分布特征,高值区PM2.5与SO2、 NO2和CO呈显著强相关,表明本地排放对高值区ρ(PM2.5)影响较大,春季和冬季最高值分别位于河津市(58.50μg·m-3)和稷山县(142.33μg·m-3),夏季最高值位于南部的平陆县(36.92...  相似文献   

12.
环境空气质量预报评估是提升预报能力的重要助力,为更好支撑空气质量精细化管理,将我国空气质量细化为12个半级别,参照英国预报评估方法,对2020年“2+26”城市AQI、 PM2.5浓度和O3-8h浓度预报开展探索性半级别预报效果评估,通过与AQI范围预报和AQI级别范围预报评估对比发现,半级别预报评估方法可将两者兼容合一,在城市业务预报评估中具有一定可行性和应用价值.具体的半级别预报评估结果表明,“2+26”城市AQI和O3-8h浓度在低段级别和高段级别的预报效果明显差于中段级别,不同级别PM2.5浓度预报效果相对稳定;AQI、 PM2.5和O3-8h浓度预报准确率月变化曲线分别呈双峰型、先升后降型和平缓型,PM2.5浓度各月偏高预报显著;不同城市AQI和O3-8h浓度预报准确率差距相对较小,PM2.5浓度预报准确率波动较大;北京和天津AQI预报准确率高于周边省份,北京和河南PM2...  相似文献   

13.
基于中国168个大气污染防治重点城市2015~2020年的5种污染物浓度监测数据,利用MAKESENS模型和综合风险指数(ARI),定量分析全国与6大城市群的大气污染总健康风险的时空分布特征.结果表明:(1)中国重点城市PM2.5污染最严重,仅15%的城市PM2.5浓度6 a均值达到了国家二级标准,NO2次之,77%的城市NO2浓度6 a均值达到了国家二级标准,京津冀和汾渭平原城市群空气污染最严重,PM2.5、 SO2、 CO和NO2浓度6 a均值高于其他城市群;(2)中国重点城市PM2.5、 SO2、 CO和NO2浓度呈下降趋势,除成渝城市群外,其余地区O3浓度呈上升趋势;京津冀和汾渭平原城市群SO2浓度下降最显著;(3)中国重点城市大气污染健康风险总体呈下降趋势,2017~2018年出现急剧下降,暴露在极高风险下的人口从1...  相似文献   

14.
基于2015~2020年海南省32个大气环境监测站监测数据,以及同期的常规气象观测资料,采用经验正交函数分解方法(EOF)、气候倾向率和趋势系数分析等方法,探讨了海南省O3-8h(最大8 h平均)时空分布特征,及其与前体物和气象因子的关系.结果表明,海南省ρ(O3-8h)呈北部和西部偏高,中部、东部和南部偏低的分布特征,最高值出现在东方市(91.5μg·m-3). 2015~2020年共有12个市县ρ(O3-8h)呈下降趋势,其中有6个市县达到了95%的信度检验.ρ(O3-8h)季节变化特征明显,秋季最高,春季和冬季次之,夏季最低.秋季ρ(O3-8h)表现为上升趋势,而其余三季为下降趋势. EOF分解的前两个特征向量场的累积方差为72.58%,能够较好地描述ρ(O3-8h)的主要分布特征.第一模态体现了ρ(O3-8h)变化的一致性,第二模态体现了地区性差异.ρ(O3-8h)的变化与前体物和气...  相似文献   

15.
近年来,我国臭氧(O3)浓度呈升高趋势,成为仅次于PM2.5影响空气质量的重要因素.为掌握长三角地区蓝天保卫战实施期间O3时空变化特征和人群健康影响,采用莫兰指数和冷热点空间统计方法分析了长三角地区2017~2020年210个监测站点O3浓度时空特征,并利用健康风险和环境价值评价法评估了长三角区域人群O3暴露水平变化的健康收益.结果表明,2017~2020年,长三角地区O3年均值和暖季均值的四分位数范围(IQR)呈现从高浓度向低浓度位移的趋势.暖季和冷季O3浓度均值均呈现北高南低的空间分布态势.暖季O3浓度均值在长三角北部和中部腹地城市出现高浓度O3集聚的特征.区域O3年均暴露浓度超过160μg·m-3及以上的人口比例由2017年的72.3%降低至2020年的34.8%.三省一市人口加权年均O3暴露浓度总体呈现下降趋势,但长三...  相似文献   

16.
汪瑶  刘润  辛繁 《环境科学》2023,44(6):3080-3088
基于2015~2020年的珠三角臭氧(O3)日最大8 h浓度平均值[MDA8 O3,ρ(O3-8h)]的观测数据和气象再分析数据,运用Lamb-Jenkinson天气分型法(LWTs)分析不同大气环流型的特征并定量其对MDA8 O3年际变化的贡献.结果表明,珠三角发生的18种天气型中ASW型更容易出现O3污染现象,而NE型会导致更严重的O3污染.根据850 hPa风场的风向变化及中心系统的不同位置将18种天气类型合并为5个天气类别来探讨不同天气型的O3生成机制,发现ρ(O3-8h)高的天气类别为N-E-S方向类别[(161±68)μg·m-3]和A类别[(122±39)μg·m-3],二者ρ(O3-8h)与日最高气温和太阳净辐射量都呈显著正相关.N-E-S方向类别为秋季主导大气环流型,而A类别多发生在春季,其中春季珠三角发生的90%O3<...  相似文献   

17.
为探究大气PM2.5和臭氧(O3)复合污染期间的污染物浓度削峰方案,以上海市2018年4月27—30日PM2.5和O3复合污染时段为研究对象,结合区域多尺度空气质量模型(CMAQ模型),建立上海市O3日最大8小时滑动平均值(MDA8 O3)以及PM2.5浓度与人为源排放的NOx和VOCs之间的响应关系,获得了EKMA (empirical kinetics modeling approach,经验动力学建模方法)曲线.在此基础上,探讨上海市MDA8 O3和PM2.5对前体物排放的敏感性,并进一步量化了本地减排、提前减排和区域减排等不同情景下PM2.5和MDA8 O3的浓度变化.结果表明:(1)上海市PM2.5和O3复合污染期间MDA8 O3的峰值率(PR)为0....  相似文献   

18.
基于2013~2020年高时空分辨率的PM2.5和O3在线监测数据以及气象观测数据,利用KZ(Kolmogorov-Zurbenko)滤波耦合逐步回归等技术,对天津市PM2.5和O3浓度变化趋势、相互关系和影响因素进行了分析.结果表明,与2013年相比,2020年天津市PM2.5浓度下降50.0%,O3浓度上升25.8%.从月际变化来看,与2013~2017年相比,2018~2020年天津市PM2.5浓度月际间差异逐渐缩小,O3浓度从4月开始出现明显上升,污染发生时间节点提前.O3与PM2.5的相关性呈现明显的季节性分布特征,冬季整体呈负相关,夏季正相关且相关性比其他季节高.不同季节O3与PM2.5之间的拟合斜率与相关性系数整体呈正比例关系,拟合斜率与相关性系数的比值逐年升高说明PM2.5对O3...  相似文献   

19.
2013—2015年中国PM2.5污染状况时空变化   总被引:2,自引:0,他引:2       下载免费PDF全文
自2013年我国首次开展全国范围PM2.5近地面监测以来,少有研究从全国空间尺度分析近3年全国PM2.5污染状况时空变化的总体特征,识别PM2.5污染加剧或缓解的空间范围,更缺乏直接对比评估国家大气污染重点防控区内外PM2.5污染特征变化的差异.基于2013—2015年PM2.5监测数据,综合运用时空统计分析与空间插值制图手段,揭示近3年ρ(PM2.5)及不同等级污染天数的时空变化格局,并着重对比分析“三区十群”区域内外ρ(PM2.5)的变化差异.结果表明,2013—2015年,全国持续监测的413个站点中有335个监测站点ρ(PM2.5)年均值下降,其中218个站点实现连续两年年均浓度降低,74个站点ρ(PM2.5)年均值降至符合国家二级标准;全国大部分地区ρ(PM2.5)年超标率由50%以上降至30%以下,重度污染站点占比由88.38%降至73.77%,严重污染站点占比由65.86%降至36.35%;长三角城市群、长株潭城市群、武汉及周边城市群、陕西关中城市群PM2.5污染呈现明显好转趋势;西藏、云贵高原以及海峡西岸城市群、珠三角城市群等沿海地区ρ(PM2.5)一直较低,空气质量相对优良;但与此同时,京津冀城市群、山东半岛城市群及河南中部和北部地区仍是中国PM2.5重污染区域,新疆西南部、合肥、南昌等地区逐渐形成新的PM2.5重污染格局.   相似文献   

20.
为研究不同污染水平下,O3浓度对气温升高的敏感程度,利用2018—2020年5—9月近地层O3日最大8 h平均浓度(O3-8 h浓度)和日最高地面气温(Tmax)数据,拟合O3-8 h浓度对Tmax变化的响应斜率(m O3-T),据此对比分析不同类型站点m O3-T的差异和O3污染特征.结果表明:(1)各站点O3-8 h浓度均随Tmax升高而增加,在24~36℃气温范围内该趋势最明显.(2)城区点m O3-T最高,高达10.6μg/(m3·℃);北部远郊区点和北部背景点m O3-T较低,低至5.2μg/(m3·℃);近郊区点与城区点的m O3-T相当.(3)总体看,北京市m O3-T较高,与O3污染高发地—美国加州南海岸地区20世纪90年代相当,说明目前北京市O...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号