首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
北京、东京、筑波大气中有机污染物组成研究   总被引:28,自引:0,他引:28  
用低流量采样器及双层采样滤膜 (石英及固相萃取用C1 8膜 )采集了北京、东京和筑波三城市冬季 (1999年 1月 )大气颗粒物和大气气相物质 ,3个城市的共同特点是大气气相物质中含有很高浓度的苯环数 2~ 4的多环芳烃及碳数小于 2 0的正构烷烃 ,大气颗粒物中以 5~ 6个苯环多环芳烃为主。冬季正构烷烃没有明显的偶数碳数和奇数的区别。但是 ,北京大气气相物质和颗粒物中多环芳烃浓度明显高于东京和筑波 ,而且各正构烷烃及多环芳烃的浓度分布也与东京和筑波的不同 ,表明冬季大气中有机污染物来源不同。   相似文献   

2.
为研究南昌经开区冬季PM2.5中正构烷烃的污染特征及来源,文章对2020年12月1日-2021年2月28日采集的PM2.5样品进行了正构烷烃浓度分析。结果表明:南昌经开区冬季PM2.5样品中正构烷烃碳数范围为C20~C33,浓度为71.66~1 295.30 ng/m3,平均为(327.51±186.07) ng/m3。气象参数和气态污染物与正构烷烃之间的相关性表明,正构烷烃浓度受到了人为排放源和气象条件的共同影响。利用诊断参数和PMF模型对正构烷烃来源进行估算,结果显示冬季人为源(化石燃料和生物质燃烧)对南昌经开区大气中正构烷烃的贡献达到66%~77%。南昌经开区冬季出现的8次污染事件,主要受到了生物质燃烧源和化石燃料燃烧源输入的控制,整个冬季污染事件期间,这2种人为源的贡献比例达到68.05%,其中生物质燃料燃烧源占比31.79%,化石燃烧占比36.26%。气象条件也对污染事件中的正构烷烃累积起到了作用,随着温度的升高,更多的挥发性有机物被分配到颗粒物中,会促进正构烷烃浓度...  相似文献   

3.
利用中流量采样器于2011年3-12月对北京西三环地区大气颗粒物进行分级采样,并利用GC-MS对颗粒物中正构烷烃含量进行测定。对不同粒径颗粒中C10-C2415种正构烷烃的测定分析表明,PM2.5、PM5和PM10中正构烷烃的年均质量浓度分别为94.24 ng/m3、114.20ng/m3和124.96 ng/m3;正构烷烃总质量浓度的季节变化趋势为:冬季>春季>秋季>夏季,且主要分布在在细粒子中(PM2.)5;正构烷烃在不同粒径粒子中质量浓度比(ρ2.5/ρ1)0正构烷烃、(ρ2.5-5/ρ1)0正构烷烃、(ρ5-10/ρ1)0正构烷烃分别为:春季为78.2%、13.2%、8.5%,夏季为68.6%、19.8%、11.6%,秋季为74.4%、13.8%、11.8%,冬季为76.4%、17.6%、6.1%。主碳峰为24和23,碳优势指数(CPI)2为0.560.57,表明正构烷烃主要来源于汽车尾气和化石燃料的燃烧等人为活动。  相似文献   

4.
为研究聊城市冬季大气PM2.5中正构烷烃和糖类化合物的分子组成、浓度水平及来源,于2017年1~2月在聊城大学进行PM2.5样品采集,对19种(C18~C36)正构烷烃和10种糖类化合物进行分析,并采用主成分分析法(PCA)解析其来源。结果表明,聊城市冬季PM2.5中总正构烷烃的质量浓度为(456.9±252.5)ng?m-3,其中,灰霾期的质量浓度最高,约为清洁天的2倍,烟火Ⅰ期与Ⅱ期分别为清洁天的0.9倍和1.2倍。采样期间碳优势指数(CPI)值为1.2±0.1,植物蜡排放的正构烷烃对总正构烷烃的贡献率(%Wax Cn)为3.1%~36.0%,表明化石燃料燃烧是聊城市大气中正构烷烃的主要来源。聊城市冬季PM2.5中糖类化合物的总质量浓度为(415.5±213.8)ng?m-3,其中左旋葡聚糖的浓度最高,其次是半乳聚糖和甘露聚糖,三者共占总糖的91.6%,表明生物质燃烧源对聊城市大气气溶胶具有重要贡献。主成分分析(PCA)结果表明,聊城市冬季大气气溶胶中正构烷烃和糖类化合物主要来自化石燃料的燃烧和生物质燃烧。  相似文献   

5.
2007年春节期间北京大气细粒子中正构烷烃的污染特征   总被引:6,自引:4,他引:2  
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的正构烷烃进行了检测和分析.结果表明,春节期间大气细粒子平均浓度全部超过WHO阈值,且夜间平均浓度要高于白天.细粒子中检测出C10~C33的正构烷烃,总浓度为201.7~2 715.6 ng·m-3,夜间正构烷烃的平均总浓度(943.5 ng·m-3)要高于白天(581.1 ng·m-3),除夕前的平均总浓度(1025.5 ng·m-3)要高于除夕后(536.6 ng·m-3).主峰碳为23、 24和25,CPI值为0.9~1.4,平均为1.15,表明春节期间北京大气细粒子中的正构烷烃主要由化石燃料的不完全燃烧产生,%WaxCn的结果表明生物源对气溶胶中正构烷烃的贡献率为8.5%~47%.  相似文献   

6.
为了探究抚仙湖水体中有机质的正构烷烃来源和时空变化特征,对2016年4月~2017年3月抚仙湖水柱悬浮颗粒物中正构烷烃的分布特征、来源、季节变化特征及其与沉积物中正构烷烃的关系进行了研究.结果表明:抚仙湖水柱悬浮颗粒物中正构烷烃的碳数分布范围在C17~C33之间,呈现以优势峰C27和C29为主的单峰分布模式.在垂直梯度的空间分布上,正构烷烃在变温层和温跃层的浓度高于深水层,最大浓度出现在深20m水层,深层水体中正构烷烃浓度受沉积物再悬浮作用影响微弱;在季节变化上,正构烷烃含量存在明显的季节波动,在10月和4月呈现最高值;其中,中长链正构烷烃(C25、C27和C29)丰度与浮游植物生物量季节变化趋势一致,证明浮游植物是抚仙湖水柱中正构烷烃的主要来源,水温是限制抚仙湖水柱中正构烷烃时空分布的关键因子.浮游植物、流域表土和沉水植物的共同输入是抚仙湖沉积物中正构烷烃C29具有较高丰度的原因,沉积物中正构烷烃(C31和C23)来源相对单一,可以有效指示流域陆源植物和沉水植物输入.本文结果可多应用正构烷烃指标进行抚仙湖长序列钻孔古环境重建研究提供数据支持.  相似文献   

7.
为研究聊城市冬季大气PM_(2.5)中正构烷烃和糖类化合物的分子组成、浓度水平及来源,于2017年1~2月在聊城大学进行PM_(2.5)样品采集,对19种(C18~C36)正构烷烃和10种糖类化合物进行分析,并采用主成分分析法(PCA)解析其来源.结果表明,聊城市冬季PM_(2.5)中总正构烷烃的质量浓度为(456. 9±252. 5) ng·m~(-3),其中,灰霾期的质量浓度最高,约为清洁天的2倍,烟火Ⅰ期与Ⅱ期分别为清洁天的0. 9倍和1. 2倍.采样期间碳优势指数(CPI)值为1. 2±0. 1,植物蜡排放的正构烷烃对总正构烷烃的贡献率(%Wax Cn)为3. 1%~36. 0%,表明化石燃料燃烧是聊城市大气中正构烷烃的主要来源.聊城市冬季PM_(2.5)中糖类化合物的总质量浓度为(415. 5±213. 8) ng·m~(-3),其中左旋葡聚糖的浓度最高,其次是半乳聚糖和甘露聚糖,三者共占总糖的91. 6%,表明生物质燃烧源对聊城市大气气溶胶具有重要贡献.主成分分析(PCA)结果表明,聊城市冬季大气气溶胶中正构烷烃和糖类化合物主要来自化石燃料的燃烧和生物质燃烧.  相似文献   

8.
呼和浩特市大气酞酸酯污染的特征   总被引:1,自引:0,他引:1  
本研究以内蒙古四屯王旗草原为对照点,于冬夏两季采集呼和浩特市不同功能大气颗粒物样品,用气相色谱仪测定样品提取物中的酞酸二正丁酯和酞酸二异辛酯。结果表明;1.呼市地区大气颗粒物中两种酞酸酯的日均值冬季为272ng/m^3,夏季为269ng/m^3,差别不大,但两种酞酸酯在气态和颗粒态中的浓度总和夏季远远高于冬季。2.各功能大气颗粒物中的酞酸酯冬季以居民区最高,清洁区最低,夏季以文化区,工业区较高、清  相似文献   

9.
采用大流量气溶胶采样器采集了重庆市万州城区2013年夏季和冬季大气中PM_(2.5)样品,并运用气相色谱-质谱联用技术对PM_(2.5)中22种(C12~C33)正构烷烃的含量进行了测定,进而对万州城区PM_(2.5)中正构烷烃的污染特征及来源进行了分析.结果表明,万州城区夏、冬季大气PM_(2.5)中均检测出C12~C33正构烷烃,主峰碳均为C29和C31.夏、冬季PM_(2.5)中正构烷烃日均总浓度分别为158.70 ng·m-3和257.20 ng·m-3,碳优势指数CPI分别为1.63和1.82,CPI1分别为0.61和0.67,CPI2分别为1.83和1.96,植物蜡参数Wax C平均值分别为53.44%和55.53%.万州城区大气细颗粒物中n-alkanes受到来源于陆源高等植物蜡的排放等生物源及化石燃料燃烧等人为源的共同影响,且生物源的影响较大.  相似文献   

10.
保定市大气气溶胶中正构烷烃的污染水平及来源识别   总被引:5,自引:4,他引:1  
有机物已成为我国城市大气颗粒物中最重要组成部分.为认知河北工业城市大气颗粒物中有机物浓度水平和来源,于2010年9月~2011年8月,利用安德森9级惯性撞击式颗粒物采样器在河北省保定市采集了大气颗粒物样品,采用有机溶剂萃取-气相色谱/质谱法定量分析了其中的正构烷烃.结果表明,采样期间保定市大气细粒子日均浓度67%超过GB 3095-2012二级标准75μg·m-3,约96%超过国家可吸入颗粒物浓度标准150μg·m-3.颗粒物中检测出C14~C32正构烷烃19种,浓度范围111.23~979.81 ng·m-3,日均浓度264.2 ng·m-3;4个季节的主峰碳各有不同,冬春季主峰碳为C20、C21和C22,夏季为C27;春、夏、秋、冬CPI值分别为0.97、1.24、0.92、0.86,平均值为1.01.冬春季正构烷烃主要受控于化石燃料燃烧和汽车尾气排放,夏秋季还同时受到高等植物角质蜡层的挥发影响,全年以人为源的影响为主.  相似文献   

11.
呼和浩特市大气气相和颗粒物中有机污染物的定性分析   总被引:5,自引:0,他引:5  
选用聚氨基甲酸酯泡沫塑料吸附块和玻璃纤维滤膜构成的大气全态采样头,以内蒙古四子王旗摹为对照点,于冬夏两季捕集呼和浩特市(呼市)大气气相和颗粒物中的有机污染物,样品经提取分离后用色质联机,气相色谱仪,液相色谱仪鉴定出3类(烃类、芳在,酞酸酯类)近80种有机污染物,对其中45种进行定量分析,结果表明呼市地区属于大气有机污染物高浓度地区。  相似文献   

12.
Aliphatic hydrocarbons (n-alkanes) associated with fine particulate matter were determined in the ambient air of urban, industrial and coastal areas in Tianjin, China, where intensive coal burning for industrial and domestic purpose takes place. n-Alkane homologues from C12 to C35 were quantifiable in all samples with C20–C31 being the most abundant species. Average concentrations of the total n-alkanes were 148.7, 250.1 and 842.0 ng/m3 in July, April and January, respectively. Seasonal variations were mainly attributed to ambient temperature changes and coal combustion for residential heating. Among the three studied areas, the highest levels of n-alkanes were observed in the industrial complex in winter and spring, but in summer the coastal alkane concentration moved up to the highest. A mono-modal distribution for n-alkanes was observed in spring and summer with odd carbon number predominance and a maximum centered at C27–C31, suggesting the release of plant wax into the atmosphere. The bimodal distribution with maxima at C22 and C26 observed in winter indicated a substantial influence of fossil fuel sources. All the CPIs (CPI1, CPI2, CPI3) values, varying between 0.64 and 1.97, indicated the influence of anthropogenic emissions on fine organic aerosols. The estimated contributions of plant wax to total n-alkanes were on average of 12.9%, 19.1% and 26.1% for winter, spring and summer, respectively.  相似文献   

13.
建立了采用预浓缩和GC FPD测定环境大气和海洋表层水中挥发性硫化物(COS、DMS和CS2)的方法.该方法对气态COS、DMS和CS2的回收率分别为(95±4)%,(86±3)%和(91±6)%(n=5),精密度分别为4 75%,8 26%和7 55%(n=5).对水体中COS、DMS和CS2的回收率分别为(86±8)%,(80±6)%和(97±12)%(n=5),精密度分别为8 17%,5 59%和11 70%.COS、DMS和CS2检出限分别为33pg,387pg和22pg.采用该方法测定了青岛近岸海域大气和表层海水中COS、DMS和CS2的浓度.结果表明,COS是近岸海域大气中主要挥发性硫化物,DMS是表层海水中最主要的挥发性硫化物.3种挥发性硫化物的浓度有明显的季节差异,夏季浓度远高于冬季浓度.  相似文献   

14.
成都市城区大气VOCs季节污染特征及来源解析   总被引:10,自引:10,他引:0  
为研究成都市城区大气VOCs季节变化特征,本研究在2018年12月至2019年11月对VOCs组分进行监测,并对VOCs的浓度水平、各化学组成、化学反应活性和来源进行分析.结果表明,成都市城区春、夏、秋和冬季VOCs的平均体积分数分别为32.29×10~(-9)、 36.25×10~(-9)、 40.92×10~(-9)和49.48×10~(-9),冬季的浓度明显高于其他季节,春季和夏季的浓度水平相差不大,各季节VOCs的组分浓度水平有所差异,冬季烷烃占总VOCs的比例最大,可能受机动车排放的影响较明显;夏季和秋季含氧(氮)挥发性有机物占比远高于春、冬季,一次源的挥发排放和二次转化的生成贡献较大;成都市城区不同季节大气中VOCs平均浓度排名靠前的关键组分基本无变化,主要是C_2~C_4的烷烃、乙烯、乙炔及二氯甲烷等,可能受机动车尾气、油气挥发、溶剂使用和LPG燃料等影响明显,夏季丙酮以及乙酸乙酯等含氧有机物浓度贡献突出;根据·OH消耗速率和OFP计算可知关键活性物种主要为间/对-二甲苯、乙烯、丙烯、1-己烯、甲苯、异戊烷和正丁烷等,这些物种应该优先减排和控制;四季VOCs源解析结果显示:春、夏季温度较秋、冬季高,光照更强,PMF明显解析出天然源和二次排放贡献,同时,由于夏季温度较高,解析出油气挥发占9%;秋、冬季占比增加的源主要为机动车尾气和燃烧源,燃烧源的排放占比在25%左右,另餐饮源的排放占比在9%左右.  相似文献   

15.
Organic acids as important constituents of organic aerosols not only influence the aerosols' hygroscopic property, but also enhance the formation of new particles and secondary organic aerosols. This study reported organic acids including C14–C32fatty acids, C4–C9dicarboxylic acids and aromatic acids in PM2.5collected during winter 2009 at six typical urban, suburban and rural sites in the Pearl River Delta region. Averaged concentrations of C14–C32fatty acids, aromatic acids and C4– C9 dicarboxylic acids were 157, 72.5 and 50.7 ng/m3, respectively. They totally accounted for 1.7% of measured organic carbon. C20–C32fatty acids mainly deriving from higher plant wax showed the highest concentration at the upwind rural site with more vegetation around, while C14–C18fatty acids were more abundant at urban and suburban sites, and dicarboxylic acids and aromatic acids except 1,4-phthalic acid peaked at the downwind rural site. Succinic and azelaic acid were the most abundant among C4–C9dicarboxylic acids, and 1,2-phthalic and 1,4-phthalic acid were dominant aromatic acids. Dicarboxylic acids and aromatic acids exhibited significant mutual correlations except for 1,4-phthalic acid, which was probably primarily emitted from combustion of solid wastes containing polyethylene terephthalate plastics. Spatial patterns and correlations with typical source tracers suggested that C14–C32fatty acids were mainly primary while dicarboxylic and aromatic acids were largely secondary. Principal component analysis resolved six sources including biomass burning, natural higher plant wax, two mixed anthropogenic and two secondary sources; further multiple linear regression revealed their contributions to individual organic acids. It turned out that more than 70% of C14–C18fatty acids were attributed to anthropogenic sources, about 50%–85% of the C20–C32fatty acids were attributed to natural sources, 80%–95% of dicarboxylic acids and 1,2-phthalic acid were secondary in contrast with that 81% of 1,4-phthalic acid was primary.  相似文献   

16.
为明确兰州市大气环境常态下低碳数正构烷烃(C5~C19)质量浓度变化、组分特征及大气化学反应活性之间的关系,于2017年11月-2018年6月选取兰州市5个采样点,利用TENAX吸附管采集空气样品,应用TD-GC/MS(热脱附-气质联用)法对样品进行分析.对空气样品中低碳数正构烷烃大气化学反应活性的OFP(臭氧生成潜势)、·OH消耗速率、SOA(二次有机气溶胶)生成潜势进行评估计算,通过相关性分析及因子分析法分析低碳数正构烷烃的大气化学反应活性贡献率特征.结果表明:①在10种低碳数正构烷烃中,正己烷(C6)对OFP的贡献率最大,正辛烷(C8)对·OH消耗速率的贡献率最大,二者的贡献率分别为37.71%和37.64%.②在10种低碳数正构烷烃中正辛烷(C8)对SOA生成潜势的贡献率最大,为50.02%.③大气化学反应活性参数相关性分析表明,低碳数正构烷烃总质量浓度与OFP、·OH消耗速率相关性显著(R分别为0.895和0.948).④因子分析表明,5个未知因子所包含的化学反应活性信息量在94.511%以上,所含信息量也体现了未知因子组成的重要性,可为进一步解析大气化学反应活性提供参考.研究显示,正辛烷、正己烷是低碳数正构烷烃的2个关键活性组分,正辛烷是大气化学反应活性贡献率最大的化合物之一,也是汽车尾气排放源的主要组成部分,正己烷是人为源与自然源的混合产物.   相似文献   

17.
Ambient particulate n-alkanes were determined for fine particle (PM2:5) samples collected from Sep 2003 to July 2004 in Beijing, China. The average concentration of total n-alkanes (Pn-alkanes) from C11 to C34 was 425.72 ng/m3, ranged from 7.02 to 2893.28 ng/m3. The concentration distributions of n-alkanes homologues in this study exhibited peaks at C21 and C29 in heating season, and C29 in non-heating season. The average carbon preference index (CPI) value was 1.88 in the range of 1.18–3.88. The maximum CPI in summer indicated the contribution of biogenic origins such as plant wax; while the minimum CPI value in winter was probably a result of fossil fuel combustion. Preliminary estimation from these results showed that 59% of the n-alkanes in PM2:5 in Beijing summer originated from plant wax, while 74%–88% was from fossil fuel combustion in other three seasons. Source estimation was further performed using principal component analysis method. Two major components were yielded accounting for 57.3% and 30.9% of the total variance, which presented the fossil fuel and biogenic contribution, respectively.  相似文献   

18.
The distribution of polyfluoroalkyl compounds (PFCs) in the dissolved and particulate phase and their discharge from the river Elbe into the North Sea were studied. The PFCs quantified included C4-C8 perfluorinated sulfonates (PFSAs), 6:2 fluorotelomer sulfonate (6:2 FTS), C6 and C8 perfluorinated sulfinates (PFSiAs), C4-C12 perfluorinated carboxylic acids (PFCAs), perfluoro-3,7-dimethyl-octanoic acid (3,7m2-PFOA), perfluorooctane sulfonamide (FOSA), and n-ethyl perfluroctane sulfonamidoethanol (EtFOSE). PFCs were mostly distributed in the dissolved phase, where perfluorooctanoic acid (PFOA) dominated with 2.9–12.5 ng/L. In the suspended particulate matter FOSA and perfluorooctane sulfonate (PFOS) showed the highest concentrations (4.0 ng/L and 2.3 ng/L, respectively). The total flux of ΣPFCs from the river Elbe was estimated to be 802 kg/year for the dissolved phase and 152 kg/year for the particulate phase. This indicates that the river Elbe acts as a source of PFCs into the North Sea. However, the concentrations of perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) in the North Sea were higher than that in the river Elbe, thus an alternative source must exist for these compounds.  相似文献   

19.
福州城市及郊区冬、夏两季大气中多环芳烃特征研究   总被引:3,自引:3,他引:0  
2010年冬、夏两季,利用大流量采样器和气相色谱-质谱联用仪(GC-MSD),分析了福州市大气中多环芳烃(PAHs)的浓度水平、分布特征及来源.结果表明,福州城郊冬、夏两季大气(颗粒相+气相)中ΣPAHs浓度范围分别为115.45~187.76ng.m-3和45.55~59.20 ng.m-3,整体而言,气相显著高于颗粒相,冬季高于夏季;冬季城区高于郊区,夏季城区则低于郊区,但城郊区差异不显著;气相中PAHs比例夏季高于冬季.整体而言,气相中PAHs主要以2~4环化合物组成,颗粒相中则以4~6环化合物为主.冬季气相中PAHs主要以3环化合物为主,夏季主要以3环和4环化合物为主;颗粒相中PAHs组成无明显的季节特征.毒性当量因子法分析表明福州市空气质量状况总体良好.来源解析表明,福州大气PAHs主要为燃烧源,福州机动车燃料以柴油为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号