首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62 × 104 mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9 × 103 mg/kg) was 3000 times that in uncontaminated soils (2.7 ± 1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions.  相似文献   

2.
Antimony trisulfide (Sb2S3) is used as a lubricant in friction material. X-ray diffraction analysis revealed Sb in 3/3 disc brake pads (range 41,000–46,000 mg/kg) and in 2/2 disc brake dust samples (21,000 and 17,000 mg/kg) from trucks. Considerably lower concentrations were found in drum brake pads (3/5, 59–6400 mg/kg) and in drum brake dust (4/18, 78–2800 mg/kg). Other toxic metals were also detected in pads and dust.The health risk of Sb in particulate brake emissions should be dependent on particle size and chemical entity, in particular solubility. A significant amount of the emitted dust was shown by size-fractionated optical particle counting to be inhalable in environmental (>90% mass) and occupational (>50% mass) exposure situations. Differentiation via selective solubility showed a considerable amount of Sb2S3 to oxidize during the braking process, likely leading to the formation of Sb2O3, a suspected human carcinogen. Sb in brake dust was soluble in calf serum (8.5±1.2%, 8.9±1.7 mg/l at 37 °C for 3 d).Hence, the use of Sb in friction material should be suspected to pose a human cancer risk and be deterred. To design healthy and environmentally sound alternatives, we propose to apply the Intelligent Product System that distinguishes products of consumption and products of service. Brake pads are true products of consumption, because they are released to biological cycles, and should thus consist of materials with positively defined health and environmental properties.  相似文献   

3.
Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP + OA, and the TCLP-Pb was <5 mg/L for the red soil at P:Pb molar ratio 4.0. Water-soluble Pb could not be detected and the TCLP-Pb was <5 mg/L at all treatments applied to the yellow-brown soil. BCR results indicated that APR was most effective, although a slight enhancement of water-soluble phosphate was detected at the P:Pb molar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability.  相似文献   

4.
本文通过吸附平衡和动力学实验方法对Sb(V)在锑矿冶炼区周边土壤表面开展吸附行为研究,用常用的等温吸附模型和动力学吸附模型分别对等温吸附曲线和动力学吸附曲线进行拟合。结果表明:Langmuir与Freundlich模型对荒地土和林地土吸附Sb(Ⅴ)的等温吸附曲线均有较好的拟合效果,拟合系数R20.988。荒地土对Sb(Ⅴ)的吸附能力大于林地土,其吸附量是林地土的2.9±0.2倍,这与Langmuir模型预测的该两种土壤的吸附倍数相当,荒地土表现出强烈吸附Sb(Ⅴ)的能力,尤其在锑浓度较高的体系中更为明显。结合土壤基本理化性质及矿物学特征,认为土壤秥粒、铁矿物和碳酸钙是影响土壤吸附Sb(V)的主要因素。有机质对土壤吸附Sb(Ⅴ)有一定促进作用,但这种影响只表现在Sb(Ⅴ)初始浓度低的条件下;而在Sb(Ⅴ)初始浓度高的条件下,有机质对土壤吸附Sb(Ⅴ)的影响不明显。土壤吸附Sb(Ⅴ)的过程分为快速吸附和慢速吸附两个阶段,快速反应发生在70 min以内。初始浓度低(0.01 mmol/L)的条件下,Elovich方程能够很好地拟合荒地土和林地土吸附Sb(V)的动态曲线;初始浓度高(2 mmol/L)的条件下,双常数方程对荒地土吸附Sb(V)的拟合效果较好,拟一级动力学方程和拟二级动力学方程则适用于拟合林地土吸附Sb(V)的过程。  相似文献   

5.
淋洗剂对多金属污染尾矿土壤的修复效应及技术研究   总被引:13,自引:3,他引:10  
以我国南方某多金属复合污染尾矿土壤为研究对象,对土壤中重金属全量和各形态含量进行分析.通过系列振荡淋洗试验研究了蒸馏水、草酸、柠檬酸、乙酸、硝酸和EDTA对污染土壤的淋洗效果,筛选合适的淋洗剂及其最佳的液土比、液洗时间、淋洗次数等技术参数,并提出利用综合毒性消减指数来综合评价淋洗剂对污染土壤的修复效果.结果表明,该土壤以Cd和Pb污染最为严重,含量分别达52.2 mg.kg-1和4 836.5 mg.kg-1;淋洗剂对土壤中不同重金属元素的淋洗效果差异明显,其中对Cr的去除率最高仅为2.7%,而最多能去除约60%的Cd和Pb;蒸馏水对重金属几乎没有脱除效果,去除率都在0.1%以下,草酸和乙酸对重金属的去除率也较低,0.1 mol.L-1的EDTA是适合的高效淋洗剂;基于综合毒性消减指数和经济成本,选择在1∶6土水比2次淋洗3 h的技术条件.  相似文献   

6.
It is generally accepted that a low dissolved oxygen(DO) concentration is more beneficial for achieving partial nitrification than high-DO. In this study, partial nitrification was not established under low-DO conditions in an intermittent aeration reactor for treating domestic wastewater. During the operational period of low-DO conditions(DO: 0.3 ±0.14 mg/L), stable complete nitrification was observed. The abundance of Nitrospira-like bacteria, which were the major nitrite-oxidizing bacteria, increased from 1.03 × 10~6to2.64 × 10~6cells/m L. At the end of the low-DO period, the batch tests showed that high-DO concentration(1.5, 2.0 mg/L) could inhibit nitrite oxidation, and enhance ammonia oxidation. After switching to the high-DO period(1.8 ± 0.32 mg/L), partial nitrification was gradually achieved. Nitrospira decreased from 2.64 × 10~6 to 8.85 × 10~5cells/m L. It was found that suddenly switching to a high-DO condition could inhibit the activity and abundance of Nitrospira-like bacteria, resulting in partial nitrification.  相似文献   

7.
Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP + OA, and the TCLP-Pb was < 5 mg/L for the red soil at P:Pb molar ratio 4.0.Water-soluble Pb could not be detected and the TCLP-Pb was < 5 mg/L at all treatments applied to the yellow-brown soil. BCR results indicated that APRwasmost effective, although a slight enhancement of water-soluble phosphate was detected at the P:Pbmolar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability.  相似文献   

8.
Removal of Pb~(2+)and biodegradation of organophosphorus have been both widely investigated respectively. However, bio-remediation of both Pb~(2+)and organophosphorus still remains largely unexplored. Bacillus subtilis FZUL-33, which was isolated from the sediment of a lake, possesses the capability for both biomineralization of Pb~(2+)and biodegradation of acephate. In the present study, both Pb~(2+)and acephate were simultaneously removed via biodegradation and biomineralization in aqueous solutions.Batch experiments were conducted to study the influence of p H, interaction time and Pb~(2+)concentration on the process of removal of Pb2+. At the temperature of 25°C, the maximum removal of Pb~(2+)by B. subtilis FZUL-33 was 381.31 ± 11.46 mg/g under the conditions of p H 5.5, initial Pb~(2+)concentration of 1300 mg/L, and contact time of 10 min. Batch experiments were conducted to study the influence of acephate on removal of Pb~(2+)and the influence of Pb2+on biodegradation of acephate by B. subtilis FZUL-33. In the mixed system of acephate–Pb2+, the results show that biodegradation of acephate by B. subtilis FZUL-33 released PO43+, which promotes mineralization of Pb2+. The process of biodegradation of acephate was affected slightly when the concentration of Pb2+was below 100 mg/L. Based on the results, it can be inferred that the B. subtilis FZUL-33 plays a significant role in bio-remediation of organophosphorus-heavy metal compound contamination.  相似文献   

9.
The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to > 2515 mg/kg soil for leached soil and 130 to > 2490 mg/kg soil for unleached soil. These results represented > 13- and > 19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds.  相似文献   

10.
Electrochemical degradation of 2,4-dichlorophenol (2,4-DCP) in aqueous solution was investigated over Ti/SnO2-Sb anode. The factors influencing the degradation rate, such as applied current density (2-40 mA/cm2), pH (3-11) and initial concentration (5-200 mg/L) were evaluated. The degradation of 2,4-DCP followed apparent pseudo first-order kinetics. The degradation ratio on Ti/SnO2-Sb anode attained > 99.9% after 20 min of electrolysis at initial 5-200 mg/L concentrations at a constant current density of 30 mA/cm2 with a 10 mmol/L sodium sulphate (Na2SO4) supporting electrolyte solution. The results showed that 2,4-DCP (100 mg/L) degradation and total organic carbon (TOC) removal ratio achieved 99.9% and 92.8%, respectively, at the optimal conditions after 30 min electrolysis. Under this condition, the degradation rate constant (k) and the degradation half-life (t1/2) were 0.21 min-1 and (2.8±0.2) min, respectively. Mainly carboxylic acids (propanoic acid, maleic acid, propanedioic acid, acetic acid and oxalic acid) were detected as intermediates. The energy efficiencies for 2,4-DCP degradation (5-200 mg/L) with Ti/SnO2-Sb anode ranged from 0.672 to 1.602 g/kWh. The Ti/SnO2-Sb anode with a high activity to rapid organic oxidation could be employed to degrade chlorophenols, particularly 2,4-DCP in wastewater.  相似文献   

11.
Influence of common dye-bath additives, namely sodium chloride, ammonium sulphate, urea, acetic acid and citric acid, on the reductive decolouration of Direct Green 1 dye in the presence of Fe0 was investigated. Organic acids improved dye reduction by augmenting Fe0 corrosion, with acetic acid performing better than citric acid. NaCl enhanced the reduction rate by its ‘salting out’ effect on the bulk solution and by Cl anion-mediated pitting corrosion of iron surface. (NH4)2SO4 induced ‘salting out’ effect accompanied by enhanced iron corrosion by SO42 − anion and buffering effect of NH4+ improved the reduction rates. However, at 2 g/L (NH4)2SO4 concentration, complexating of SO42 − with iron oxides decreased Fe0 reactivity. Urea severely compromised the reduction reaction, onus to its chaotropic and ‘salting in’ effect in solution, and due to it masking the Fe0 surface. Decolouration obeyed biphasic reduction kinetics (R2 > 0.993 in all the cases) exhibiting an initial rapid phase, when more than 95% dye reduction was observed, preceding a tedious phase. Maximum rapid phase reduction rate of 0.955/min was observed at pH 2 in the co-presence of all dye-bath constituents. The developed biphasic model reckoned the influence of each dye-bath additive on decolouration and simulated well with the experimental data obtained at pH 2.  相似文献   

12.
Organic ligand-induced dissolution kinetics of antimony trioxide   总被引:1,自引:0,他引:1  
The influence of low-molecular-weight dissolved organic matter(LMWDOM) on the dissolution rate of Sb_2O_3 was investigated. Some representative LMWDOMs with carboxyl, hydroxyl,hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen, namely oxalic acid, citric acid, tartaric acid, EDTA, salicylic acid, phthalandione, glycine, thiolactic acid,xylitol, glucose and catechol. These LMWDOMs were dissolved in inert buffers at pH = 3.7, 6.6and 8.6 and added to powdered Sb_2O_3 in a stirred, thermostatted reactor(25°C). The addition of EDTA, tartaric acid, thiolactic acid, citric acid and oxalic acid solutions at pH 3.7 and catechol at pH 8.6 increased the rate of release of antimony. In the 10 mmol/L thiolactic acid solution, up to 97% by mass of the antimony was released after 120 min reaction. There was no effect on the dissolution of Sb_2O_3 for the other ligands. A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found. All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb_2O_3 was not determined by the stability of the dissolved complex, but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface. This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands, but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals.  相似文献   

13.
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m~2/hr to the final 4.3 L/m~2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.  相似文献   

14.
The responses of soil ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB) to mercury(Hg) stress were investigated through a short-term incubation experiment.Treated with four different concentrations of Hg(CK,Hg25,Hg50,and Hg100,denoting 0,25,50,and 100 mg Hg/kg dry soil,respectively),samples were harvested after 3,7,and 28 day incubation.Results showed that the soil potential nitrification rate(PNR) was significantly inhibited by Hg stress during the incubation.However,lower abundances of AOA(the highest in CK: 9.20 × 10~7 copies/g dry soil; the lowest in Hg50: 2.68 × 10~7 copies/g dry soil) and AOB(the highest in CK: 2.68 × 10~7 copies/g dry soil; the lowest in Hg50:7.49 × 10~6 copies/g dry soil) were observed only at day 28 of incubation(P 0.05).Moreover,only the community structure of soil AOB obviously shifted under Hg stress as seen through DGGE profiles,which revealed that 2–3 distinct AOB bands emerged in the Hg treatments at day 28.In summary,soil PNR might be a very useful parameter to assess acute Hg stress on soil ecosystems,and the community structure of soil AOB might be a realistic biological indicator for the assessment of heavy metal stress on soil ecosystems in the future.  相似文献   

15.
Nitrate-nitrogen(NO_3~--N) always accumulates in commercial recirculating aquaculture systems(RASs) with aerobic nitrification units. The ability to reduce NO_3~--N consistently and confidently could help RASs to become more sustainable. The rich dissolved oxygen(DO)content and sensitive organisms stocked in RASs increase the difficulty of denitrifying technology. A denitrifying process using biologically degradable polymers as an organic carbon source and biofilm carrier was proposed because of its space-efficient nature and strong ability to remove NO_3~--N from RASs. The effect of dissolved oxygen(DO) levels on heterotrophic denitrification in fixed-film reactors filled with polycaprolactone(PCL) was explored in the current experiment. DO conditions in the influent of the denitrifying reactors were set up as follows: the anoxic treatment group(Group A, average DO concentration of 0.28 ± 0.05 mg/L), the low-oxygen treatment DO group(Group B, average DO concentration of 2.50 ± 0.24 mg/L) and the aerated treatment group(Group C, average DO concentration of 5.63 ± 0.57 mg/L). Feeding with 200 mg/L of NO_3~--N, the NO_3~--N removal rates were 1.53, 1.60 and 1.42 kg/m3PCL/day in Groups A, B and C, respectively. No significant difference in NO_3~--N removal rates was observed among the three treatments. It was concluded that the inhibitory effects of DO concentrations lower than 6 mg/L on heterotrophic denitrification in the fixed-film reactors filled with PCL can be mitigated.  相似文献   

16.
This study investigated the degradation and production of volatile fatty acids(VFAs)in the acidogenic phase reactor of a two-phase anaerobic system.20 mmol/L bromoethanesulfonic acid(BESA)was used to inhibit acidogenic methanogens(which were present in the acidogenic phase reactor)from degrading VFAs.The impact of undissociated volatile fatty acids(un VFAs)on"net"VFAs production in the acidogenic phase reactor was then evaluated,with the exclusion of concurrent VFAs degradation."Net"VFAs production from glucose degradation was partially inhibited at high un VFAs concentrations,with 59%,37% and 60% reduction in production rates at 2190 mg chemical oxygen demand(COD)/L undissociated acetic acid(un HAc),2130 mg COD/L undissociated propionic acid(un HPr)and 2280 mg COD/L undissociated n-butyric acid(un HBu),respectively.The profile of VFAs produced further indicated that while an un VFA can primarily affect its own formation,there were also un VFAs that affected the formation of other VFAs.  相似文献   

17.
Dispersion and aggregation of nanoparticles in aqueous solutions are important factors for safe application of nanoparticles. In this study, dispersion and aggregation of nano-TiO2 in aqueous solutions containing various anions were investigated. The influences of anion concentration and valence on the aggregation size, zeta potential and aggregation kinetics were individually investigated. Results showed that the zeta potential decreased from 19.8 to − 41.4 mV when PO43 − concentration was increased from 0 to 50 mg/L, while the corresponding average size of nano-TiO2 particles decreased from 613.2 to 540.3 nm. Both SO42 − and NO3 enhanced aggregation of nano-TiO2 in solution. As SO42 − concentration was increased from 0 to 500 mg/L, the zeta potential decreased from 19.8 to 1.4 mV, and aggregate sizes increased from 613.2 to 961.3 nm. The trend for NO3 fluctuation was similar to that for SO42 − although the range of variation for NO3 was relatively narrow. SO42 − and NO3 accelerated the aggregation rapidly, while PO43 − did so slowly. These findings facilitate the understanding of aggregation and dispersion mechanisms of nano-TiO2 in aqueous solutions in the presence of anions of interest.  相似文献   

18.
Mercury (Hg) exists in different chemical forms presenting varied toxic potentials. It is necessary to explore an ecological risk assessment method for different mercury species in aquatic environment. The predicted no-effect concentrations (PNECs) for Hg(II) and methyl mercury (MeHg) in the aqueous phase, calculated using the species sensitivity distribution method and the assessment factor method, were 0.39 and 6.5 × 10− 3 μg/L, respectively. The partition theory of Hg between sediment and aqueous phases was considered, along with PNECs for the aqueous phase to conduct an ecological risk assessment for Hg in the sediment phase. Two case studies, one in China and one in the Western Black Sea, were conducted using these PNECs. The toxicity of mercury is heavily dependent on their forms, and their potential ecological risk should be respectively evaluated on the basis of mercury species.  相似文献   

19.
Lime mud is a kind of solid waste in the papermaking industry, which has been a source of serious environmental pollution. Ceramsites containing anorthite and gehlenite were prepared from lime mud and fly ash through the solid state reaction method at 1050°C. The objective of this study was to explore the efficiency of Ca2 + and OH release and assess the phosphorus and copper ion removal performance of the ceramsites via batch experiments, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that Ca2 + and OH were released from the ceramsites due to the dissolution of anorthite, gehlenite and available lime. It is also concluded that gehlenite had stronger capacity for Ca2 + and OH release compared with anorthite. The Ca2 + release could be fit well by the Avrami kinetic model. Increases of porosity, dosage and temperature were associated with increases in the concentrations of Ca2 + and OH released. Under different conditions, the ceramsites could maintain aqueous solutions in alkaline conditions (pH = 9.3–10.9) and the release of Ca2 + was not affected. The removal rates of phosphorus and copper ions were as high as 96.88% and 96.81%, respectively. The final pH values of both phosphorus and copper ions solutions changed slightly. The reuse of lime mud in the form of ceramsites is an effective strategy.  相似文献   

20.
Salinization and sodicity are obstacles for vegetation reconstruction of coastal tidal flat soils. A study was conducted with flue gas desulfurization(FGD)-gypsum applied at rates of 0, 15, 30, 45 and 60 Mg/ha to remediate tidal flat soils of the Yangtze River estuary.Exchangeable sodium percentage(ESP), exchangeable sodium(ExNa), p H, soluble salt concentration, and composition of soluble salts were measured in 10 cm increments from the surface to 30 cm depth after 6 and 18 months. The results indicated that the effect of FGD-gypsum is greatest in the 0–10 cm mixing soil layer and 60 Mg/ha was the optimal rate that can reduce the ESP to below 6% and decrease soil p H to neutral(7.0). The improvement effect was reached after 6 months, and remained after 18 months. The composition of soluble salts was transformed from sodic salt ions mainly containing Na~+, HCO_3~-+ CO_3~(2-)and Cl-to neutral salt ions mainly containing Ca~(2+)and SO_4~(2-). Non-halophyte plants were survived at 90%. The study demonstrates that the use of FGD-gypsum for remediating tidal flat soils is promising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号