首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木糖操纵子是芽孢杆菌中常用的表达元件,但目前对其认识只停留在静态机理层面,关于其在发酵过程中转录调控特性的研究还鲜见报道.利用qPCR技术探究在葡萄糖胁迫下地衣芽孢杆菌木糖诱导的木糖异构酶基因在发酵过程中的转录水平,考察菌体的生长状态,并通过二硝基水杨酸(DNS)法及高效液相色谱(High performance liquid chromatography,HPLC)法测定发酵过程中糖浓度变化.结果显示:在实验所设置的地衣芽孢杆菌代谢相对稳定的条件下,地衣芽孢杆菌木糖启动子转录强度在稳定期以前均呈增加的趋势,在对数生长末期或稳定前期转录强度最高,约是7 h时的14倍,随后呈下降趋势;进一步研究发现20-180 g/L葡萄糖浓度均对其表现为抑制,且抑制程度一致,当葡萄糖含量极少或者没有而木糖存在的情况下,启动子转录强度极高.本研究表明以地衣芽孢杆菌为宿主的木糖诱导系统在菌体对数生长末期诱导效果最佳;当环境中葡萄糖含量极少或者没有而木糖存在的情况下,更有利于启动子表达;结果对利用木糖诱导型重组地衣芽孢杆菌诱导发酵有一定的启示与指导意义.(图5表2参24)  相似文献   

2.
耐高温α-淀粉酶基因在枯草芽孢杆菌中的高效表达   总被引:5,自引:0,他引:5  
高温α-淀粉酶是发酵行业用量最大的酶类,为了实现高温α-淀粉酶基因的高效表达,本研究比较了不同启动子对地衣芽孢杆菌的耐高温α-淀粉酶基因在枯草芽孢杆菌中表达的影响.分别用强启动子P43和地衣芽孢杆菌的耐高温α-淀粉酶基因自身启动子构建了表达载体pP43NMK-amy和pUBCl9-amy,并在枯草芽孢杆菌BacillussubtilislA752S中进行表达.结果表明,与地衣芽孢杆菌的耐高温α-淀粉酶基闪自身启动子相比,采用P43启动子的耐高温α-淀粉酶其表达水平提高了8.9倍.而且在枯草芽孢杆菌B.subtilislA752S中分泌表达的α-淀粉酶仍具有耐高温的特性,酶反应的最适温度为90℃,表明酶的热稳定性南蛋白质本身的氨基酸序列决定的.  相似文献   

3.
构建了高效表达耐高温α-淀粉酶的枯草芽孢杆菌表达系统,并研究了该表达系统的主要特点.通过PCR扩增由地衣芽孢杆菌的基因组DNA分离高温淀粉酶基因后,将其克隆到质粒pSG703中.然后用pSG703质粒转化含温和性噬菌体φ105MU331的枯草芽孢杆菌,通过同源重组使高温淀粉酶基因插入到溶源性枯草芽孢杆菌的染色体上,并处于φ105MU331的强启动子下游.由于高温淀粉酶基因处于噬菌体的强启动子下游,在热诱导后可以实现高温淀粉酶的高效表达,诱导后8h内分泌到培养液中的高温淀粉酶活性可以达到9.58×103u/mL.本文构建的重组高温淀粉酶表达系统具有稳定、高效和杂蛋白分泌少的特点.图5参16  相似文献   

4.
绿色荧光蛋白基因标记内生枯草芽孢杆菌   总被引:14,自引:0,他引:14  
用枯草芽孢杆菌168菌株rpsD基因的启动子替换质粒pGFP4412中蜡状芽孢杆菌4412启动子,从而构建了能在枯草芽孢杆菌中表达绿色荧光蛋白基因gfpmut3a的载体pS4GFP,将其导入具有内生、防病、促生作用的野生型枯草芽孢杆菌BS-2菌株中,筛选获得遗传稳定性好且具有良好发光表型的标记菌株BS-2-gfp.该标记菌株在小白菜体内的定殖研究结果表明,该菌株能够在小白菜根际及根、茎、叶内定殖和传导,接菌50d后仍能在其体内分离到标记菌株.图5参17  相似文献   

5.
聚γ-谷氨酸(γ-PGA)是一种应用前景良好的生物高分子材料.比较了蔗糖诱导的枯草芽胞杆菌果聚糖蔗糖酶基因(SacB)启动子和地衣芽胞杆菌α-淀粉酶基因启动子对γ-PGA降解酶基因ywtD在地衣芽胞杆菌中加强表达的影响.分别用SacB基因启动子和α-淀粉酶启动子构建了穿梭表达载体pHY300-SYT和pHY300-PYT,通过电转化地衣芽胞杆菌WX-02获得重组子SYT和PYT.酶活测定结果显示SYT和PYT中γ-PGA降解酶基因ywtD得到加强表达,摇瓶发酵结果显示两个重组菌株的γ-PGA相对分子质量都由1 000 000~1 200 000降低为800 000~900 000,PYT的γ-PGA产量较对照菌株PLK提高了33%,由13.50 g L-1提高到17.97 g L-1,而SYT的γ-PGA产量则降低为10.85 g L-1.因此,α-淀粉酶启动子更适合于在地衣芽胞杆菌WX-02菌株中表达γ-PGA降解酶基因,从而获得高产低分子量γ-PGA的工程菌.  相似文献   

6.
一株多菌灵降解菌NY97-1的分子鉴定及GFP标记   总被引:1,自引:0,他引:1  
用PCR方法扩增的多菌灵降解菌NY97-1的16SrDNA片段经TA克隆后,进行序列测定和BLAST同源序列比较分析,确定了其分类地位为短小芽孢杆菌(Bacilluspumilus,B.p).经BamHⅠ酶切的启动子探针载体pUC19-gfp与NY97-1基因组DNA的Sau3AⅠ酶切片段酶连,酶连产物转化E.coliDH5a,建立B.p的启动子基因文库.挑选其中的两个强阳性克隆,亚克隆来自短小芽孢杆菌总基因组的启动子活性片段F4、F5,构建大肠杆菌-短小芽孢杆菌穿梭表达载体pNW33N-F4-gfp、pNW33N-F5-gfp.通过电转化得到gfp在B.p中的两株标记菌株.在荧光显微镜下,观察到了明亮的绿色荧光,证明活性片段F4、F5均具有组成型启动子的功能,实现了gfp基因在B.p中组成型表达,且遗传稳定,为今后研究多菌灵降解菌B.p在自然环境中的定殖、分布及动态变化打下了基础.图3表2参20  相似文献   

7.
短小芽孢杆菌SCU11是由本实验室分离的野生菌株BA06经过复合诱变得到的高产碱性蛋白酶菌株,其产生的碱性蛋白酶在生物制革领域具有很好的应用前景.为进一步提高菌株的蛋白酶产量以满足工业生产的需求,本研究利用响应面法优化菌株产蛋白酶的发酵培养条件.在前期单因素实验的基础上,通过Plackett-Burman实验设计、最陡爬坡实验、中心组合实验设计和响应面分析法,确定了当黄豆粉浓度为53.3 g/L,温度为28℃时,蛋白酶活有理论最大值8 884 U/m L,摇瓶实验验证酶活为8 768 U/m L,达到理论预测值的98.7%,比优化前酶活提高了1倍.为了解优化的发酵条件使蛋白酶产量提高的原因,对短小芽孢杆菌蛋白酶基因及相关调控基因的表达情况进行荧光定量PCR分析,结果显示,优化后5种蛋白酶基因的表达量上调,1种表达量下调;5种蛋白酶相关调控基因的表达量增加,2种基因表达量降低.推测是优化后正调控基因表达量的增加以及负调控基因表达量的降低,促进了短小芽孢杆菌胞外蛋白酶基因转录水平的提高,导致胞外蛋白酶产量增加.本研究采用响应面法优化发酵条件使短小芽孢杆菌SCU11蛋白酶产量提高了1倍,并为阐明其表达调控机制奠定了基础.(图3表7参24)  相似文献   

8.
RecA与UvrA是细胞SOS系统中重要的修复蛋白,在细胞DNA损伤后诱导表达.将报告基因绿色荧光蛋白基因(gfpmut3a)分别置于recA和uvrA启动子调控下,构建成质粒pRecAgfp和pUvrAgfp,并转化E.coli DH5α,构建成检测菌株ERS101和EUS101.试验发现,菌株ERS101和EUS101在致畸物吖啶橙处理后,GFP的表达量增高,菌悬液经507nm的蓝光激发后产生的绿色荧光明显增强,且与吖啶橙的浓度具有一定的相关性,即使在0.5μg mL^-1的吖啶橙诱导下也能检测到荧光增强效应.对硝基酚等多种致畸物处理后的检测菌株均有荧光增强效应.图4表1参9  相似文献   

9.
转录调控因子ALs R是枯草芽孢杆菌中赖氨酸家族的转录调控因子,负责调控丙酮酸到乙偶姻和2,3-丁二醇合成途径中乙酰乳酸合成酶和乙酰乳酸脱羧酶的表达.为探究枯草芽孢杆菌生产乙偶姻和2,3-丁二醇过程中ALs R的最适表达强度,选取5个不同强度的启动子来调控ALs R的表达,首先以绿色荧光蛋白(GFP)作为报告基因表征了不同强度启动子的转录活性,然后使用这些不同强度的启动子来调控ALs R的表达,研究ALs R的表达强度对枯草芽孢杆菌乙偶姻和2,3-丁二醇发酵的影响.结果发现,在使用表达水平较强的组成型启动子P_(als SD)调控ALs R表达时,细胞的发酵周期延长8 h,细胞密度有所下降,乙偶姻和2,3-丁二醇产量也有一定程度的下降.当使用较弱的启动子P_(srf A)、P_(bdh A)、P_(zwf)、P_(als R)调控ALs R表达时,ALS和ALDC酶活分别提高1.15-2.25倍和2.4-4.8倍,此时比较适于乙偶姻和2,3-丁二醇的合成,乙偶姻和2,3-丁二醇的产量分别提高了9.24%-19.63%和7.16%-14.91%,同时副产物乳酸和乙酸的产量分别降低了5.45%-18.18%和19.46%-31.21%,其中在启动子P_(bdh A)调控ALs R表达时,即ALS和ALDC酶活分别提高1.9倍和4.1倍,此时最适于乙偶姻和2,3-丁二醇的发酵生产,乙偶姻和2,3-丁二醇的产量分别提高了19.6%和14.9%,副产物乳酸和乙酸的产量也显著下降.本研究发现过量地表达转录调控因子ALs R会对细胞的生长造成影响,不利于乙偶姻和2,3-丁二醇的发酵,而适度强化表达转录调控因子ALs R不会对细胞的生长造成影响,可以有效地提高乙偶姻和2,3-丁二醇的产量,降低发酵过程中的副产物乙酸和乳酸的积累.(图5表4参34)  相似文献   

10.
用PCR方法从地衣芽孢杆菌 2 70 9和 6 816中扩增了碱性蛋白酶基因 (apr1和apr2 ) ,扩增的DNA片段插入到大肠杆菌载体 pET -2 8a中 ,构建成重组分泌型表达载体pAPR1、pAPR2 .pAPR1、pAPR2中碱性蛋白酶基因在大肠杆菌宿主JM 10 9(DE3)中得到表达 .SDS -PAGE分析显示融合表达产物的分子量均为 30 .5× 10 3 ,同核酸序列测定所推导的值相符 .表达产物分别占细胞总蛋白的 8.0 %和 7.5 % .2 70 9重组菌所得酶活为 12 10u/mL ,6 816重组菌所得酶活为 1175u/mL .研究发现 ,重组的碱性蛋白酶在进入大肠杆菌周质空间时可能存在前肽自动脱落的现象 .同时 ,对地衣芽孢杆菌 2 70 9碱性蛋白酶基因序列进行了测定和比较分析 ,发现与地衣芽孢杆菌 6 816碱性蛋白酶基因的同源性为 98% .图 5参 11  相似文献   

11.
有机磷农药降解菌的紫外诱变育种   总被引:20,自引:0,他引:20  
有机磷农药降解菌地衣芽孢杆菌( Bacilluslicheniformis) 经紫外线诱变后,筛选出突变菌株P12 .在θ=30℃,溶解氧ρ(O2) =2 .5 mg L-1 的培养条件下,3 d 内对甲胺磷的降解率为80 .1% ,比出发菌株提高了将近10%的降解率.农药斜面连续传代10 次,降解活力保持稳定.  相似文献   

12.
假单胞菌表达载体pYMB03的构建与性能分析   总被引:1,自引:0,他引:1  
恶臭假单胞菌(Pseudomonas putida)是具有强抗逆性能的环境优势菌,构建其质粒表达载体有着明显的应用潜力.将恶臭假单胞菌AB92019菌株中肽聚糖相关脂蛋白编码基因的启动子PoprL和质粒载体pTrcHis-B的多克隆位点片段插入到质粒载体pUCPl8的EcoRL/HInIII位点,获得了重组载体pYMB03.用绿色荧光基因gfp作为标记进行外源蛋白表达的结果表明,该载体能分别在恶臭假单胞菌AB92019菌株和大肠杆菌DH5a菌株中,由启动子PoprL启动组成型表达GFP蛋白并使细胞产生可见荧光.经SDS-PAGE验证,所产生的GFP蛋白分别占细胞总蛋白的12.5%和5.O%.重组菌株YMB001中GFP表达量与菌体培养时间有关,在稳定期后期其相对荧光强度达到最大值(D600nm=l.0),但与培养温度未见相父性.对携带该载体的2株重组恶臭假单胞菌7次168 h继代培养测定,载体pYMB03的稳定性均为100%.  相似文献   

13.
组织特异性启动子能够驱动基因在特定的时期和部位表达,克服组成型启动子启动的外源基因在受体植物中非特异、持续、高效表达所造成的浪费,是基因工程技术最重要元件之一.本研究利用PCR技术从水稻基因组中克隆了幼穗分化特异表达基因RFL翻译起始位点上游2 001 bp的启动子序列,命名为pRFL.生物信息分析显示,该片段含有36个转录起始核心启动子元件TATA-box和多个启动子增强子区顺式作用元件CAAT-box,以及多个光反应调控元件和植物激素响应元件等.将其与GUS基因构建成植物表达载体,导入水稻"日本晴",组织化学染色法检测显示,转基因水稻植株叶片、茎均无GUS显色,花序及发育中的小花有较强表达;荧光定量PCR测定幼穗GUS基因转录活性,显示pRFL驱动的GUS基因表达量比actin启动子驱动的GUS基因表达量高2.9倍.上述结果初步证明了pRFL为幼穗分化特异性启动子.  相似文献   

14.
从污染土壤中分离出地衣芽孢杆菌(Bacillus licheniformis),利用其死菌体对Cr^6+溶液进行吸附动力学研究.在Ci=300mg/L、pH=2.5和日=50℃条件下,吸附120min获得最大吸附量60.5mg/g.应用Langmuir和Freundlich吸附等温线研究,结果表明,Langmuir吸附等温线更为适合.动力学研究显示,地衣芽孢杆菌对Cr^6+的吸附动力学可以用拟二级速度方程进行描叙.图3表4参14  相似文献   

15.
为了解启动子在茶树Ankyrin基因(CsAnkyrin)表达调控中的作用,以茶树新品系‘1005’嫩芽为材料,通过染色体步移技术克隆CsAnkyrin基因启动子序列,利用Neural Network Promoter Prediction和PlantCARE在线软件等对启动子序列进行生物信息学分析,将含有内含子和删除内含子的启动子序列(+intron/-intron)分别定向替换pCAMBIA1301表达载体的CaMV35S启动子,构建重组表达载体后分别转化拟南芥,并进行GUS组织化学染色分析.结果显示,克隆得到的CsAnkyrin启动子序列(命名为proAnk)为1 010 bp,含有一个5′UTR(5′Untranslated regions,5′非编码区)内含子.启动子序列除含有启动子核心元件TATA-box和CAAT-box,还存在有激素响应元件、光响应元件、厌氧胁迫应答元件以及大量功能未知或功能特异的顺式作用元件.删除5′UTR内含子后的启动子序列能够驱动下游GUS报告基因表达,保留5′UTR内含子的启动子序列不能驱动下游GUS报告基因正常表达,但是RT-PCR实验结果表明5′UTR内含子在转录后没有被切除,而是和GUS基因一起转录产生融合mRNA.本研究表明,proAnk具有诱导型启动子特性,5′UTR内含子对下游基因正常表达具有负调控作用,且可能是在翻译水平上对下游基因表达产生影响.(图7表1参32)  相似文献   

16.
番茄NAC转录因子编码基因SlNAC1受假单胞菌、盐、干旱和低温等多种生物和非生物胁迫诱导表达,但其转录调控机制仍不清楚.为研究SlNAC1的盐应答转录调控机制,分离SlNAC1基因的启动子并分析其盐应答功能.构建4个5′-缺失的SlNAC1启动子(起始密码子上游2 039 bp、1 508 bp、1 373 bp和777 bp)驱动的GUS基因表达载体,并利用农杆菌介导法分别转化烟草(Nicotiana benthamiana),随后对转基因植株进行NaCl处理和GUS染色分析.结果显示,未经NaCl处理的转基因植株均不被明显染色,而NaCl处理后,除777 bp启动子转基因植株外,2 039 bp、1 508 bp和1373 bp启动子转基因植株都被明显染色.这说明SlNAC1启动子中盐应答元件位于-1 373 bp和-777 bp之间.结合该区间有4个盐应答元件——GT1GMSCAM4元件(核心序列为GAAAAA)的预测分析结果,推断这4个GT1GMSCAM4元件中的一个或者多个协同负责SlNAC1基因的盐应答转录调控.这4个GT1GMSCAM4元件将用于筛选SlNAC1盐应答的转录调控因子.(图4表1参28)  相似文献   

17.
蓝藻发酵生产微生物农药的影响因素研究   总被引:3,自引:0,他引:3  
采用摇瓶发酵试验探讨了蓝藻为原料制备苏云金杆菌生物杀虫剂的可行性,并考察了不同培养条件(蓝藻含固率、种龄、接种量、初始pH、摇床转速、发酵温度)对苏云金杆菌生长增殖、产孢与产毒效果的影响。研究结果表明,无需任何预处理工序,Btk 130菌株能在蓝藻为唯一原料的培养基中正常生长发育,并且产孢产毒。发酵48 h后,芽孢产率达到86.7%,远高于常规培养基;生物毒效为282 IU.mL-1,与常规培养基相当。培养条件优化结果表明,在蓝藻含固率为2%、初始pH为7.0、接种物种龄为9 h、接种量为2%、培养温度为30℃、摇瓶转速为200 r.min-1的条件下培养48 h,Btk 130可达到较好的发酵效果,活菌数及抗热芽孢数可达7.32 CFU.mL-1和6.38 CFU.mL-1,生物毒效为528 IU.mL-1。该研究不仅为蓝藻提供了高附加值的处置新途径,而且可显著降低生物杀虫剂的生产成本,具有广阔的应用前景。  相似文献   

18.
木糖是秸秆等纤维素类生物质原料中含量仅次于葡萄糖的第二丰富的糖,构建可高效发酵木糖的酿酒酵母菌株是提高原料利用率、降低纤维素燃料乙醇生产成本的基础.外源基因的高效表达以及本源基因的调控都需要选择表达强度合适的启动子.基于比较转录组,在全基因组水平上比较解析酿酒酵母所有基因在发酵葡萄糖、发酵木糖、发酵混合糖(葡萄糖和木糖)条件下的表达强度,拟为构建木糖利用菌株提供一系列备选的启动子库.结果表明,碳源种类对酿酒酵母启动子的强度有显著影响,绝大多数启动子强度受碳源影响显著,有67个启动子的强度在不同碳源条件下保持了相对稳定;启动子P_(TEF1)和P_(TEF2)、P_(ADH1)、P_(CCW12)和某些核糖体蛋白基因启动子可在构建木糖利用菌株时作为组成型强启动子,另有中、弱强度的组成型启动子可用于基因表达优化;启动子P_(YNR071C)、P_(PUT1)、P_(DSF1)等可作为利用木糖时的诱导型启动子,使基因在有需要的时候才进行表达.本研究在系统解析全基因组启动子强度和碳源种类的关系基础上,为构建利用不同碳源的酿酒酵母菌株提供了具有不同表达特征的候选启动子库.(图1表6参24)  相似文献   

19.
茉莉酸受体蛋白COI1(coronatine insensitive 1)是茉莉酸信号转导途径的重要组成部分,为鉴定分析茶树茉莉酸受体COI1基因家族,预测其潜在的分子功能,了解茉莉酸受体COI1基因在乌龙茶加工中应答胁迫的分子机制,利用生物信息学方法对茶树茉莉酸受体COI1进行家族成员鉴定,氨基酸序列、结构域、基因结构、进化分析以及启动子顺式元件分析,结合实时荧光定量分析CsCOI1基因在乌龙茶加工中的表达.结果显示,茶树茉莉酸受体CsCOI1家族有两个成员,均含有F-box和富亮氨酸重复序列(LRRs)两个结构域;单子叶、双子叶的COI1蛋白各聚一支,且与蜜柑进化关系较近;茶树COI1基因家族两个成员均含有3个内含子,启动子顺势元件主要有胁迫响应元件、激素响应元件以及光响应元件;转录组数据说明茶树CsCOI1基因具有较强的组织表达差异性.实时荧光定量分析表明,CsCOI1a基因在室内萎凋后表达显著上调,且15 min、30 min日光萎凋后CsCOI1b基因的表达水平显著上调,同时茉莉酸含量发生显著变化.本研究推测CsCOI1基因可能通过茉莉酸信号转导途径参与乌龙茶加工中萎凋的胁迫响应过程,该结果可为乌龙茶加工品质调控奠定基础.(图8表2参30)  相似文献   

20.
终止子是一段位于基因编码之后的序列,作为一种调控信号调控DNA的转录终止和RNA的释放,在基因工程技术应用中通常被构建在目的基因下游,用以调控基因的转录和表达.现有常用的终止子很少,克隆和验证新的终止子是植物基因工程技术发展的需要.通过生物信息学分析和Realtime-PCR表达验证,筛选出候选基因腺苷酸核糖基化作用因子(Similar to ADP-ribosylation factor1,arf1)基因,克隆了水稻arf1基因3′-UTR.结果显示,所克隆3′-UTR片段含有8个多聚信号元件和4个UE片段.将3′-UTR与gus基因融合后分别与玉米泛素启动子Ubiquitin和花椰菜花叶病毒(CaMV)启动子35S连接构建植物表达载体验证3′-UTR调控表达效果.烟草瞬时表达显示3′-UTR融合的gus基因在35S和Ubi启动子驱动下,在烟草叶片中能正常表达;3′-UTR调控下的gus基因在水稻根、茎、叶、花和种子中均可稳定表达,且表达量与T-Nos终止子相当.本研究表明所克隆的3′-UTR可替代T-nos终止子,可为植物基因工程技术的应用提供新的调控元件.(图5表3参29)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号