首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2022年夏季高温干旱严重影响中国长江流域,臭氧(O3)等污染物也出现明显异常,为研究高温干旱对污染物的影响,利用2015-2022年夏季逐小时地面空气质量和气象监测数据以及气象再分析资料,分析了夏季高温干旱特征以及对O3和细颗粒物(PM2.5)浓度的影响。结果表明:2022年夏季受高原暖高压和西太平洋副热带高压西伸北抬的影响,中国长江流域出现极端高温干旱天气事件,持续时间长,影响范围广,其中四川盆地和长三角地区地面温度明显偏高,相对湿度和降水量偏低,对近地面O3和PM2.5浓度造成了一定的影响。7-8月高温干旱对四川盆地产生的影响尤其严重。异常的高温干旱增强了大气光化学反应能力,对O3和二次气溶胶生成有贡献,且降水对污染物的湿清除作用大大减弱,导致四川盆地O3浓度和超标天数明显增加,PM2.5浓度也有所升高,甚至造成持续十多天的高温热浪和O3污染复合事件,其中对成都平原O3  相似文献   

2.
基于2020年6—8月济南市石化区、市区和南部山区VOCs以及臭氧和气态污染物等在线监测数据,结合气象因素分析了各典型区夏季VOCs污染特征,并通过计算臭氧生成潜势(OFP)和MCM模型模拟分析了不同区域不同污染等级VOCs对臭氧生成的影响,采用PMF模型对市区夏季VOCs进行了来源解析研究.结果表明,石化区VOCs浓度(158.29μg·m-3)明显高于市区(47.71μg·m-3)和南部山区(24.65μg·m-3),VOCs中均以烷烃占比最大,其次为芳香烃,3个区域VOCs浓度均随污染等级升高而升高;不同污染等级下均为石化区OFP(743.7—1474.9μg·m-3)大于市区(156.9—378.1μg·m-3)和南部山区(113.4—168.7μg·m-3),3个区域均是芳香烃OFP占比最大,其次为烯烃,说明芳香烃和烯烃类VOCs对臭氧生成的贡献最大,其中OFP贡献最大的单体为间/对-二甲苯;MCM模拟结果表明石化区O3净生...  相似文献   

3.
本文分析了银川都市圈的商业/交通/居民混合区和工业区两类典型站点的大气挥发性有机物(VOCs)的日变化特征,并通过臭氧生成潜势(OFP)对其生成臭氧潜力进行了评估,此外,基于观测的光化学模型(OBM模型)分析了银川都市圈臭氧生成对前体物的敏感性.观测结果表明,观测期间银川都市圈臭氧呈单峰型日变化,其中商业/交通/居民混合区采样点峰值出现在16:00—18:00,臭氧日最高小时浓度范围为131—200μg·m-3;工业区采样点峰值出现在14:00—17:00,臭氧日最高小时浓度范围为155—186μg·m-3.商业/交通/居民混合区采样点和工业区采样点总挥发性有机物(TVOCs)日变化浓度均呈现出早晚高、日间低的趋势,最大浓度分别为28.70×10-9、165.84×10-9.烯烃对两个采样点臭氧生成潜势均有较大贡献,商业/交通/居民混合区和工业区采样点的贡献率分别为21.58%—67.59%和57.42%—89.73%.银川都市圈大气臭氧生成速率对VOCs中的烯烃和芳香烃的增量变化最为敏感,对CO以...  相似文献   

4.
新冠肺炎疫情的暴发对生产生活模式产生了重大影响,进而改变了大气污染现状和规律,是一次极限减排的“大气实验”.本研究以中国典型大气污染控制区的关中城市群为研究对象,考察该地区疫情管控下大气污染物污染特征、来源和形成机制,解析了大气细颗粒物(PM2.5)中化学组分的浓度变化特征.结果显示,除O3外,其余大气污染物浓度的整体变化趋势均表现为管控前>管控后,与全国趋势一致、但程度不同.新冠肺炎疫情的社会隔离措施大幅度削减了各类排放源,西安市、咸阳市、铜川市、宝鸡市、渭南市等5个城市PM10、PM2.5、NO2和CO浓度值明显降低,其中PM10、SO2、NO2、CO在疫情期间的浓度达到近5年来历史最低.O3浓度在封城期间却有显著上升的现象,表明大气氧化性可能在燃烧排放减少的背景下由于NO2滴定效应减小而得到强化.对西安市PM2.5中水溶性阴阳离子浓度对...  相似文献   

5.
近地层臭氧(O3)浓度升高对植物的不良影响随着暴露时间的延长如何变化?国内外研究还很少.选取樱桃萝卜(Raphanus sativus var. radculus)为对象,采用开顶式气室(OTC),设置4个O3熏蒸浓度(NF:环境O3浓度;NF40:NF+40 nmol/mol;NF80:NF+80 nmol/mol;NF120:NF+120 nmol/mol),通过建立O3暴露剂量AOT40与各指标的剂量响应关系模型,研究O3浓度升高和暴露时间延长对樱桃萝卜生长发育和生理生化指标的响应及变化规律.结果表明:(1)随着暴露时间的延长,高浓度O3熏蒸下叶片褪绿和黄化程度加重.O3浓度升高,受害叶片占比增大,叶面积减小.(2)O3浓度升高,樱桃萝卜叶片内叶绿素(Chl)、类胡萝卜素(Car)及可溶性蛋白(SP)含量显著降低(P <0.01),丙二醛(MDA)、可溶性糖(SS)、还原型抗坏血酸(ASC)、还原型谷...  相似文献   

6.
烟花爆竹的燃放是短期内空气质量恶化的重要原因,严重危害人体健康.利用河南省18个地市2016—2019年空气质量指数、污染物浓度(SO2、NO2、O3、CO、PM2.5和PM10)和气象因子(气压、气温、相对湿度、风速、降水)数据,采用距离倒数权重插值、变异系数分析及相似性指数等方法,从多角度探究河南省春节禁燃政策的实施成效.结果表明,2016—2019年河南省春节期间的空气质量呈现逐渐改良趋势,污染出现的时间稍有提前,多出现在春节前期.禁燃对控制SO2、PM2.5和PM10的浓度骤升(“削峰”)有很好的效果,对NO2、O3、CO的影响较小. 2016年烟花爆竹燃放对PM2.5、PM10和SO2贡献量最大、贡献时间持续最长,贡献率分别为66.98%、56.32%和56.49%;到2019年,随着禁燃成效的...  相似文献   

7.
采集太原市3个不同功能区夏季和冬季环境空气样品,使用色谱-质谱仪测定挥发性有机物(VOCs)的组成,分析VOCs浓度变化和日变化特征,计算臭氧生成潜势(OFP),利用特征比值法和正定矩阵因子分析法(PMF)研究环境空气中VOCs的来源.结果表明,观测期间太原市环境空气中VOC总浓度变化范围为(36.27—210.67)μg·m~(-3),夏季和冬季VOCs化合物平均质量浓度为49.73μg·m~(-3)和205.19μg·m~(-3),冬季环境空气中VOCs浓度是夏季VOCs的4.13倍;VOCs日变化受到机动车排放和光化学反应显著影响,且夏季影响大于冬季;夏季OFP最大的物种为烯烃类化合物,冬季OFP最大的物种为芳香烃类化合物.太原市环境空气中VOCs主要包括五类污染源,分别为燃煤源28.10%、机动车源27.41%、挥发源22.90%、液化石油/天然气源14.90%和植物源6.69%;不同功能区主要污染源存在差异,太原市夏季工业交通区最主要排放源为燃煤源,居民商业混合区和居民交通区受燃煤源和机动车排放源共同影响,冬季太原市燃煤源是环境空气中VOCs的最主要污染源.  相似文献   

8.
蒋燕  尹元畅  王波  王斌 《环境化学》2014,(11):2005-2006
大气中挥发性有机物(VOCs)通常具有光化学活性,是对流层臭氧(O3)和二次有机气溶胶(SOA)的重要前体物.据估算,沈阳市2007年餐饮业VOCs排放量达581.1吨[1];而北京市餐饮业每年将有1500吨细粒子有机颗粒物排入大气[2].餐饮油烟作为城市VOCs的重要来源之一,对大气环境具有重要影响.本文利用成都市8家社会餐饮实地监测数据,分析VOCs排放特征,估算全市餐饮业VOCs排放总量,并计算其臭氧和  相似文献   

9.
为研究贵阳市大气臭氧的光化学生成特征,于2016年选取大气臭氧浓度较高的时段,在城区和郊区环境空气质量监测点对贵阳非甲烷烃类的环境浓度进行了观测.并利用基于观测的光化学模型分析了贵阳近地面大气臭氧生成的典型光化学过程和敏感性.通过在臭氧浓度较高时段,对比分析城区和郊区臭氧和臭氧前体物、模拟的主要自由基和光化学链反应终止产物的变化特征,发现贵阳城区与郊区的臭氧生成特征不同.通过分析臭氧主要前体物的相对增量反应活性,进一步发现城区臭氧生成主要受VOCs控制,郊区主要受NOx控制.控制人为源的烯烃和芳香烃对于控制城区臭氧污染最为有效.  相似文献   

10.
为探究宝鸡市秋季大气PM2.5中水溶性离子的污染特征及来源,于2019年10月15日至11月14日分别对宝鸡市监测站、文理学院和陈仓区环保局的3个站点进行PM2.5样品采集,通过离子色谱仪得到水溶性离子质量浓度,分析了3个站点水溶性离子在清洁时段和污染时段的变化特征及来源.结果表明,三站点PM2.5的质量浓度陈仓区环保局>文理学院>宝鸡市监测站.清洁时段和污染时段PM2.5平均质量浓度分别为40.0μg·m-3和100.1μg·m-3,水溶性离子平均质量浓度分别为(13.7±7.7)μg·m-3和(57.8±15.0)μg·m-3.污染时段NO3-/SO42-值是清洁时段的1.6—1.8倍.污染越重,SNA(NO3-、SO42-和NH4+)质量浓度越大,占总水溶性离子和P...  相似文献   

11.
主要针对陕西省西咸新区空港新城夏季臭氧质量浓度偏高的问题,通过对主要气象要素与臭氧质量浓度之间的相关性分析,研究气象要素对该区域臭氧质量浓度变化的影响关系,明确各气象要素对臭氧的影响范围,为该地区夏季臭氧污染控制提供参考。于2018年7月27日00:00—8月26日23:00开展了臭氧与气象条件(气温、相对湿度、风向、风速和紫外辐射)监测工作,共30 d。根据监测结果,西咸新区空港新城在盛夏期间(7—8月)臭氧浓度总体偏高,平均质量浓度为103.8μg·m~(-3),最大质量浓度达306μg·m~(-3),期间有16 d出现了臭氧小时浓度值超标现象;空港新城臭氧浓度日变化呈单峰趋势,最大值出现在17:00左右,最小值出现在06:00左右。研究发现空港新城臭氧质量浓度与气温和紫外辐射强度呈显著正相关,其相关系数分别为r=0.778 3、r=0.582 8,与相对湿度呈显著负相关(r=-0.784 5)。空港新城臭氧质量浓度与风速之间的关系不显著,其相关系数r为0.151 3,这主要与该区域风速较低且变化幅度不大有关。一些气象要素如高温度、强紫外辐射和低相对湿度等有助于该区域臭氧浓度的升高,当环境温度≥32℃、紫外辐射≥40 W·m~(-2)、相对湿度≤60%时,都有利于对流层空气中臭氧的生成,更容易造成O_3浓度超标。  相似文献   

12.
森林被誉为"地球之肺",在防霾治污方面有其独特不可替代的作用,不同树种沉降PM2.5的功能有很大差别.本文选取代表性城市森林——奥林匹克森林公园为研究对象,设置垂直监测塔观测大气PM2.5的浓度垂直分布,以考察不同季节城市森林对PM2.5中各组分的影响.在冬季、春季和夏季各采集PM2.5样品,分析并计算PM2.5中Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-和SO42-等典型水溶性无机离子的浓度.结果表明,PM2.5中水溶性无机离子总浓度呈规律性变化特征:冬季((56.90±27.38)μg·m-3)>春季((46.69±12.24)μg·m-3)>夏季((23.16±8.75)μg·m-3).其中SO42-和NO3-浓度和占PM2.5主要水溶性无机离子总浓度的50%以上.3个季节中,除冬季外,在春季和夏季,8种离子有明显的垂直方向上的沉降,夏季的沉降速率高于春季,但是春季由于大气颗粒物浓度高,沉降通量高于夏季.NO3-和SO42-垂直方向的沉降量在所有可溶性无机离子中最高.植被密度、叶面积指数、气象条件等因素对于PM2.5的沉降特征有明显影响.  相似文献   

13.
天津夏季地面O3浓度变化规律与影响因素   总被引:2,自引:1,他引:1  
臭氧是城市污染大气中的首要光化学污染物,其变化规律与前体物(NO、NO2和CO)和气象因素关系密切.利用2008年夏季天津城区地面大气O3、相关前体物和气象因素等观测数据,研究了O3浓度水平和时间变化规律,重点分析了7月3日-8月5日O3与NO、NO2和CO等前体物及气象因素(气温、相对湿度和风速)的相关性.结果表明,天津城区夏季O3存在一定的污染,超标时段多发生在13:00-19:00,这一时段对应高温、低湿、大风的天气条件;NO、NO2和CO作为O3的前体物,昼间其浓度与O3浓度呈线性负相关,夜间相互作用较为复杂,相关性显著降低;气象因素对O3浓度影响明显,高温、低湿利于光化学反应的进行,O3浓度与风速呈正相关表明可能有外来源的存在.  相似文献   

14.
为探究川南地区大气气溶胶中化学组分与来源特征,于2015年9月—2016年8月在四川盆地南部4个典型代表城市(泸州、内江、宜宾、自贡)采集了226个PM2.5样品,对PM2.5的质量浓度和主要化学组分(水溶性离子和碳质组分)进行测定,并利用颗粒物源解析受体模型对PM2.5来源进行解析.结果表明:川南地区PM2.5日均浓度为46.4—68.0μg·m-3,均高于国家环境空气质量标准年均PM2.5限值(35.0μg·m-3).OC、EC和水溶性二次离子(SO42-、NO3-和NH4+)分别占PM2.5质量的15.7%—22.8%、4.2%—6.4%和28.6%—55.8%.PM2.5及其主要化学组分浓度有显著的季节变化,即冬季浓度显著高于其他季节,夏季浓度最低.泸州除夏季外,其他季节SO42-、NO3-同源性较好;其他城市在冬季,SO42-、NO3-同源性较好.NH4+主要存在形式为NH4NO3、(NH4)2SO4、NH4HSO4.OC、EC来源复杂,主要为机动车源、煤燃烧源和生物质燃烧源.川南地区PM2.5的来源主要受8种因子影响,按总体贡献排序依次为:二次硫酸盐、生物质燃烧、工业源、二次硝酸盐、机动车源、煤燃烧、道路尘埃和建筑尘埃.此外,相比较而言,机动车源贡献在泸州市较凸显,煤燃烧源贡献在宜宾市较凸显.  相似文献   

15.
京津冀城市群是中国空气污染最严重的区域之一,探明该地区空气质量的时空变化特征和影响因素对空气污染防治具有重要意义。利用2014—2018年空气实时监测数据,运用系统聚类与空间分析方法,研究京津冀城市群空气质量的时空变化特征和关键影响因素,结果表明:2014—2018年京津冀城市群空气质量改善趋势明显,SO2、PM2.5、PM10与CO浓度均有显著下降,O3浓度逐年升高;以PM2.5、PM10、NO2与O3四项污染物浓度指标为依据,可将区域空气质量状况分为“低-低-低-低”(Ⅰ类),“中低-中低-高-中低”(Ⅱ类),“中高-中高-中低-高”(Ⅲ类)与“高-高-中高-中高”(Ⅳ类)4个区域,区间城市的地理点具有空间上的连续性,区内城市则具有空间上的聚集性;空气质量指数(AQI)呈“秋冬高,春夏低”的变化特点,5—9月O3污染突出,10月至次年4月颗粒物污染突出,四类分区内的特征污染物和变化规律各异;污染“热点”始终保持在保定西部-石家庄-邢台-邯郸一带,区域春夏季AQI的差异表现为东西向,秋冬季则表现为南北向;政策影响对污染物减排作用明显,是整个地区空气质量改善的根本原因。太阳辐射、空气湿度、季风等气象因素是张家口与承德夏季臭氧污染的关键因子,污染物排放变化是第Ⅱ、Ⅲ、Ⅳ类城市空气质量改善的主要原因,风速,降雨等气象因子具有局部调节作用。在微观区域分析中,第二产业比重对PM2.5和O3的影响以北京-廊坊-天津为核心由内而外逐渐减小,汽车拥有量的影响逆向增加。  相似文献   

16.
为分析济南市PM2.5中二次组分的时空变化和影响因素,对济南市春季(2019年5月16—25日)、秋季(2019年10月15—24日)和冬季(2019年12月17—2020年1月16日)4个典型点位的PM2.5样品进行连续采样,并测定了PM2.5中水溶性离子、有机碳(OC)和元素碳(EC)的含量。结果表明:物流交通区的二次组分质量浓度最高(56.13μg·m?3),钢铁工业区的二次组分浓度比城市市区高,但是二次组分占比较城市市区低,清洁对照点的浓度和占比最低;济南市4个功能区SO42?和NO3?转化率均高于0.1,除清洁对照点外,城市市区、钢铁工业区和物流交通区的SO42?转化率明显高于NO3?转化率;济南市春季、秋季和冬季的ρ(NO3?)/ρ(SO42?)分别为0.67、2.57和1.98,春季PM2.5浓度以固定源贡献为主,秋季和冬季以移动源贡献为主;运用ISORROPIA热力学模型分析了含水量和pH对二次组分生成的影响,含水量会随着污染增大而增大,酸度和含水量对二次无机组分的转化机理产生影响,酸度会抑制二次无机组分的生成,而含水量会促进二次组分的生成;后向轨迹聚类分析结果表明,占比最高的轨迹(29.2%)来自东北方向的滨州和东营,基于潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT)分析PM2.5中二次组分质量浓度的潜在污染源区域,SO42?的主要贡献源区在济南市区北部的济阳区和东北方向的滨州、东营等,NO3?和NH4+的主要贡献源区在济南市区北方向的济阳区、东北方向的章丘区和南方向的莱芜区等。该研究结果可为中国北方城市细颗粒物进一步的治理和防控提供数据支撑和理论依据。  相似文献   

17.
二氧化碳(CO2)是导致全球变暖最主要的温室气体,掌握准确的CO2空间分布信息可以有效评估碳减排成效,对于推进碳达峰、碳中和工作具有重要意义。相比站点观测,碳卫星能够获取大尺度的CO2分布信息,但是由于其幅宽较窄以及云覆盖的影响,大气CO2卫星遥感数据存在大量缺值区域,不能获得空间连续的大气CO2分布。以新疆维吾尔自治区为研究区,基于2019年OCO-2卫星大气二氧化碳柱平均干空气混合比(XCO2)数据,结合气温、地形、植被、大气NO2浓度等相关变量,综合对比了多元线性回归(MLR)、地理加权回归(GWR)、支持向量机(SVR)、随机森林(RF)、极端梯度提升树(XGBoost)和极端随机树(ERT)等方法在生成大气XCO2空间连续数据中的表现。交叉验证结果表明,RF、XGBoost和ERT这3种集成学习模型精度明显优于SVR、GWR和MLR模型,其中ERT模型精度最高,决定系数R2为0.7...  相似文献   

18.
泰安市大气挥发性有机物污染特征及来源解析   总被引:4,自引:0,他引:4  
李凯  潘宁  梅如波  王玉军 《环境化学》2022,41(2):482-490
2018年夏季对泰安市城区站点的挥发性有机物(VOCs)进行监测,研究了其污染特征、臭氧生成潜势(OFP)和特征污染物比值,利用PMF源解析模型对VOCs的来源进行了解析.结果 表明,观测期间泰安市VOCs体积分数平均值为(16.57±7.99)× 10-9,VOCs中浓度占比最高的为OVOCs(41.9%),其次为烷...  相似文献   

19.
高浓度臭氧对人体健康造成伤害,还会影响植物生长;臭氧也是一种重要的温室气体,影响全球气候变化。本文利用塔克拉玛干沙漠腹地塔中地区2010年6月1日至2012年12月31日和北缘城市库尔勒2010年7月1日至2012年12月31日地表臭氧质量浓度连续观测数据,结合PM10和气象资料,对地表臭氧质量浓度的日、周、月、季节与不同天气条件下日变化特征进行了分析,同时探讨了影响臭氧变化的主要因素。结果表明,(1)臭氧质量浓度日变化具有明显的单峰型日变化规律,夜间变化平缓,白天变化剧烈。09:00前后达到最低值,18:00前后达到最高值,出现时间稍迟于沿海城市。(2)臭氧质量浓度变化具有周末效应现象。最高值出现在星期日,最低值出现在星期三;星期一至星期三浓度逐渐降低,星期四又逐渐上升。(3)塔中最高月平均浓度出现在2010年6月,质量浓度为89.6μg·m-3,最低质量浓度出现在2012年12月,为22.1μg·m-3;库尔勒最高月平均质量浓度出现在2010年8月,为82.1μg·m-3,最低为2012年12月的12.5μg·m-3。月平均质量浓度以6月份为中心对称分布,两边月份逐渐降低。(4)春、夏季臭氧质量浓度较高,秋季和冬季明显低于春季和夏季,与沿海大中型城市变化特征基本一致。(5)4种天气中,日变化最剧烈的是晴天,其次为小雨天气,阴天较平缓。沙尘天气出现前,臭氧质量浓度变化较小,沙尘天气开始后质量浓度下降,且下降速度较快。(6)辐射变化具有单峰型日变化规律,臭氧质量浓度变化明显晚于辐射变化,太阳辐射的强弱直接影响光化学反应速度,从而导致臭氧质量浓度的变化;臭氧质量浓度日变化与PM10质量浓度日变化具有相反变化趋势,但在时间变化上有一定的滞后性,臭氧质量浓度变化明显早于PM10的变化。(7)晴天少云的天气情况下臭氧质量浓度明显要高于阴雨(雪)天,气温、相对湿度、风速、风向、日照时数共同影响近地面臭氧质量浓度的变化,臭氧污染的发生是多种因素共同作用的结果。  相似文献   

20.
为增进对北京地区不同季节大气挥发性有机物(VOCs)变化特征的认识,利用高时间分辨率质子迁移反应-飞行时间质谱(PTR-TOF-MS)于2016年在北京城区开展了VOCs(甲醛、乙醛、丙酮、异戊二烯、苯、甲苯和8碳芳香烃)夏季(6月8日—20日)和冬季(11月22日—12月10日)的连续观测.VOCs体积分数(浓度)的均值为(夏季/冬季,×10~(-9)):甲醛(8.56/24.58)、乙醛(3.95/7.57)、丙酮(5.06/3.50)、异戊二烯(0.66/0.52)、苯(0.53/1.78)、甲苯(1.03/2.54)、8碳芳香烃(1.34/3.42).受大气扩散条件的影响,夏冬两季大部分VOCs浓度波动趋势相近,仅异戊二烯在夏季拥有明显的白天浓度高于夜间的时间序列,其白天的高浓度与植被排放较强有关.由日变化可见:冬季,所有VOCs在中午浓度处于全天较低水平,在早高峰期间VOCs浓度上升明显;夏季,甲醛、乙醛和丙酮等3种含氧VOCs(OVOCs)在中午有短暂的浓度峰值,这与它们光化学二次生成加快有关.由VOC与苯浓度比值的日变化可知:冬季与夏季类似,中午前后3种OVOCs(甲醛、乙醛和丙酮)的光化学生成以及甲苯和8碳芳香烃的光化学消耗都会增强,只是冬季增强的程度明显弱于夏季;在夏冬两季,甲醛中午的光化学生成速率均强于乙醛和丙酮.8碳芳香烃光化学消耗速率大于甲苯的速率仅出现在夏季;异戊二烯在冬季白天不存在植被排放增强的现象,但有光化学消耗加快的特征;夏季北京城区VOCs以机动车排放影响为主,而冬季VOCs还可能来自于燃煤排放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号