首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
• PANI/Ti(OH)n(4n)+ exhibited excellent adsorption capacity and reusability. • Adsorption sites of Cr(VI) were hydroxyl, amino/imino group and benzene rings. • Sb(V) was adsorbed mainly through hydrogen bonds and Ti-O-Sb. • The formation of Cr-O-Sb in dual system demonstrated the synergistic adsorption. • PANI/TiO2 was a potential widely-applied adsorbent and worth further exploring. Removal of chromium (Cr) and antimony (Sb) from aquatic environments is crucial due to their bioaccumulation, high mobility and strong toxicity. In this work, a composite adsorbent consisting of Ti(OH)n(4n)+ and polyaniline (PANI) was designed and successfully synthesized by a simple and eco-friendly method for the uptake of Cr(VI) and Sb(V). The synthetic PANI/TiO2 composites exhibited excellent adsorption capacities for Cr(VI) and Sb(V) (394.43 mg/g for Cr(VI) and 48.54 mg/g for Sb(V)), wide pH applicability and remarkable reusability. The adsorption of Cr(VI) oxyanions mainly involved electrostatic attraction, hydrogen bonding and anion-π interactions. Based on X-ray photoelectron spectroscopy and FT-IR analysis, the adsorption sites were shown to be hydroxyl groups, amino/imino groups and benzene rings. Sb(V) was adsorbed mainly through hydrogen bonds and surface complexation to form Ti-O-Sb complexes. The formation of Cr-O-Sb in the dual system demonstrated the synergistic adsorption of Cr(VI) and Sb(V). More importantly, because of the different adsorption sites, the adsorption of Cr(VI) and Sb(V) occurred independently and was enhanced to some extent in the dual system. The results suggested that PANI/TiO2 is a promising prospect for practical wastewater treatment in the removal of Cr(VI) and Sb(V) from wastewater owing to its availability, wide applicability and great reusability.  相似文献   

2.
• Magnetic multi-template molecularly imprinted polymer composite was synthesized. • MIP composite was used as the adsorbent for removal of tetracyclines from water. • MIP composite showed excellent adsorption selectivity toward tetracyclines. • MIP composite possessed good reusability. Antibiotic contamination of the water environment has attracted much attention from researchers because of their potential hazards to humans and ecosystems. In this study, a multi-template molecularly imprinted polymer (MIP) modified mesoporous silica coated magnetic graphene oxide (MGO@MS@MIP) was prepared by the surface imprinting method via a sol-gel process and was used for the selective, efficient and simultaneous removal of tetracyclines (TCs), including doxycycline (DC), tetracycline (TC), chlorotetracycline (CTC) and oxytetracycline (OTC) from water. The synthesized MIP composite was characterized by Fourier transform infrared spectroscopy, transmission electron microscope and thermogravimetric analysis. The adsorption properties of MGO@MS@MIP for these TCs were characterized through adsorption kinetics, isotherms and selectivity tests. The MIP composite revealed larger adsorption quantities, excellent selectivity and rapid kinetics for these four tetracyclines. The adsorption process was spontaneous and endothermic and followed the Freundlich isotherm model and the pseudo-second-order kinetic model. The MGO@MS@MIP could specifically recognize DC, TC, CTC and OTC in the presence of some chemical analogs. In addition, the sorption capacity of the MIP composite did not decrease significantly after repeated application for at least five cycles. Thus, the prepared magnetic MIP composite has great potential to contribute to the effective separation and removal of tetracyclines from water.  相似文献   

3.
• FeS/carbon fibers were in situ synthesized with Fe-carrageenan hydrogel fiber. • The double helix structure of carrageenan is used to load and disperse Fe. • Pyrolyzing sulfate groups enriched carrageenan-Fe could easily generate FeS. • The adsorption mechanisms include reduction and complexation reaction. Iron sulfide (FeS) nanoparticles (termed FSNs) have attracted much attention for the removal of pollutants due to their high efficiency and low cost, and because they are environmentally friendly. However, issues of agglomeration, transformation, and the loss of active components limit their application. Therefore, this study investigates in situ synthesized FeS/carbon fibers with an Fe-carrageenan biomass as a precursor and nontoxic sulfur source to ascertain the removal efficiency of the fibers. The enrichment of sulfate groups as well as the double-helix structure in ι-carrageenan-Fe could effectively avoid the aggregation and loss of FSNs in practical applications. The obtained FeS/carbon fibers were used to control a Cr(VI) polluted solution, and exhibited a relatively high removal capacity (81.62 mg/g). The main mechanisms included the reduction of FeS, electrostatic adsorption of carbon fibers, and Cr(III)-Fe(III) complexation reaction. The pseudo-second-order kinetic model and Langmuir adsorption model both provided a good fit of the reaction process; hence, the removal process was mainly controlled by chemical adsorption, specifically monolayer adsorption on a uniform surface. Furthermore, co-existing anions, column, and regeneration experiments indicated that the FeS/carbon fibers are a promising remediation material for practical application.  相似文献   

4.
•The history of biological and artificial water channels is reviewed. •A comprehensive channel characterization platform is introduced. •Rationale designs and fabrications of biomimetic membranes are summarized. •The advantages, limitations, and challenges of biomimetic membranes are discussed. •The prospect and scalable solutions of biomimetic membranes are discussed. Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.  相似文献   

5.
• Mitigating energy utilization and carbon emission is urgent for wastewater treatment. • MPEC integrates both solar energy storage and wastewater organics removal. • Energy self-sustaining MPEC allows to mitigate the fossil carbon emission. • MPEC is able to convert CO2 into storable carbon fuel using renewable energy. • MPEC would inspire photoelectrochemistry by employing a novel oxidation reaction. Current wastewater treatment (WWT) is energy-intensive and leads to vast CO2 emissions. Chinese pledge of “double carbon” target encourages a paradigm shift from fossil fuels use to renewable energy harvesting during WWT. In this context, hybrid microbial photoelectrochemical (MPEC) system integrating microbial electrochemical WWT with artificial photosynthesis (APS) emerges as a promising approach to tackle water-energy-carbon challenges simultaneously. Herein, we emphasized the significance to implement energy recovery during WWT for achieving the carbon neutrality goal. Then, we elucidated the working principle of MPEC and its advantages compared with conventional APS, and discussed its potential in fulfilling energy self-sustaining WWT, carbon capture and solar fuel production. Finally, we provided a strategy to judge the carbon profit by analysis of energy and carbon fluxes in a MPEC using several common organics in wastewater. Overall, MPEC provides an alternative of WWT approach to assist carbon-neutral goal, and simultaneously achieves solar harvesting, conversion and storage.  相似文献   

6.
• Physical, chemical and biological methods are explored for MPs removal. • Physical methods based on adsorption/filtration are mostly used for MPs removal. • Chemical methods of MPs removal work on coagulation and flocculation mechanism. • MBR technology has also shown the removal of MPs from water. • Global policy on plastic control is lacking. Microplastics are an emerging threat and a big challenge for the environment. The presence of microplastics (MPs) in water is life-threatening to diverse organisms of aquatic ecosystems. Hence, the scientific community is exploring deeper to find treatment and removal options of MPs. Various physical, chemical and biological methods are researched for MPs removal, among which few have shown good efficiency in the laboratory. These methods also have a few limitations in environmental conditions. Other than finding a suitable method, the creation of legal restrictions at a governmental level by imposing policies against MPs is still a daunting task in many countries. This review is an effort to place all effectual MP removal methods in one document to compare the mechanisms, efficiency, advantages, and disadvantages and find the best solution. Further, it also discusses the policies and regulations available in different countries to design an effective global policy. Efforts are also made to discuss the research gaps, recent advancements, and insights in the field.  相似文献   

7.
• Functional groups of AM and EDTA in composite increased removal of Cr(VI) and CR. • Removal process reached equilibrium within 30 min and was minimally affected by pH. • Elimination of Cr(VI) was promoted by coexisting CR. • Adsorption process of CR was less influenced by the presence of Cr(VI). • Mechanisms were electrostatic attraction, surface complexation and anion exchange. We prepared ethylenediaminetetraacetic acid (EDTA)-intercalated MgAl-layered double hydroxide (LDH-EDTA), then grafted acrylamide (AM) to the LDH-EDTA by a cross-linking method to yield a LDH-EDTA-AM composite; we then evaluated its adsorptive ability for Congo red (CR) and hexavalent chromium (Cr(VI)) in single and binary adsorption systems. The adsorption process on LDH-EDTA-AM for CR and Cr(VI) achieved equilibrium quickly, and the removal efficiencies were minimally affected by initial pH. The maximum uptake quantities of CR and Cr(VI) on LDH-EDTA-AM were 632.9 and 48.47 mg/g, respectively. In mixed systems, chromate removal was stimulated by the presence of CR, while the adsorption efficiency of CR was almost not influenced by coexisting Cr(VI). The mechanisms involved electrostatic attraction, surface complexation, and anion exchange for the adsorption of both hazardous pollutants. In the Cr(VI) adsorption process, reduction also took place. The removal efficiencies in real contaminated water were all higher than those in the laboratory solutions.  相似文献   

8.
• Ceramic membrane filtration showed high performance for surface water treatment. • PTC pre-coagulation could enhance ceramic membrane filtration performance. • Ceramic membrane fouling was investigated by four varied mathematical models. • PTC pre-coagulation was high-effective for ceramic membrane fouling control. Application of ceramic membrane (CM) with outstanding characteristics, such as high flux and chemical-resistance, is inevitably restricted by membrane fouling. Coagulation was an economical and effective technology for membrane fouling control. This study investigated the filtration performance of ceramic membrane enhanced by the emerging titanium-based coagulant (polytitanium chloride, PTC). Particular attention was paid to the simulation of ceramic membrane fouling using four widely used mathematical models. Results show that filtration of the PTC-coagulated effluent using flat-sheet ceramic membrane achieved the removal of organic matter up to 78.0%. Permeate flux of ceramic membrane filtration reached 600 L/(m2·h), which was 10-fold higher than that observed with conventional polyaluminum chloride (PAC) case. For PTC, fouling of the ceramic membrane was attributed to the formation of cake layer, whereas for PAC, standard filtration/intermediate filtration (blocking of membrane pores) was also a key fouling mechanism. To sum up, cross-flow filtration with flat-sheet ceramic membranes could be significantly enhanced by titanium-based coagulation to produce both high-quality filtrate and high-permeation flux.  相似文献   

9.
• N-Cl-DCAM, an emerging N-DBP in drinking water was investigated. • A new BAC has a better removal efficiency for N-Cl-DCAM precursors than an old BAC. • N-Cl-DCAM precursors are more of low molecular weight and non-polar. • Adsorption of GAC plays a major role in removal of N-Cl-DCAM precursors by an O3-BAC. N-chloro-2,2-dichloroacetamide (N-Cl-DCAM) is an emerging nitrogenous disinfection by-product (N-DBP) which can occur in drinking water. In this study, an analytical method based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) was developed to validate the concentration of N-Cl-DCAM, which was found to be 1.5 mg/L in the effluent of a waterworks receiving raw water from Taihu Lake, China. The changes of N-Cl-DCAM formation potential (N-Cl-DCAMFP) in the drinking water treatment process and the removal efficiency of its precursors in each unit were evaluated. Non-polar organics accounted for the majority of N-Cl-DCAM precursors, accounting for 70% of the N-Cl-DCAM FP. The effect of conventional water treatment processes on the removal of N-Cl-DCAM precursors was found to be unsatisfactory due to their poor performance in the removal of low molecular weight (MW) or non-polar organics. In the ozonation integrated with biological activated carbon (O3-BAC) process, the ozonation had little influence on the decrease of N-Cl-DCAM FP. The removal efficiency of precursors by a new BAC filter, in which the granular activated carbon (GAC) had only been used for four months was higher than that achieved by an old BAC filter in which the GAC had been used for two years. The different removal efficiencies of precursors were mainly due to the different adsorption capacities of GAC for individual precursors. Low MW or non-polar organics were predominantly removed by GAC, rather than biodegradation by microorganisms attached to GAC particles.  相似文献   

10.
• Synthesized few-layered MoS2 nanosheets via surfactant-assisted hydrothermal method. • Synthesized MoS2 nanosheets show petal-like morphology. • Adsorbent showed 93% of mercury removal efficiency. • The adsorption of mercury is attributed to negative zeta potential (-21.8 mV). Recently, different nanomaterial-based adsorbents have received greater attention for the removal of environmental pollutants, specifically heavy metals from aqueous media. In this work, we synthesized few-layered MoS2 nanosheets via a surfactant-assisted hydrothermal method and utilized them as an efficient adsorbent for the removal of mercury from aqueous media. The synthesized MoS2 nanosheets showed petal-like morphology as confirmed by scanning electron microscope and high-resolution transmission electron microscopic analysis. The average thickness of the nanosheets is found to be about 57 nm. Possessing high stability and negative zeta potential makes this material suitable for efficient adsorption of mercury from aqueous media. The adsorption efficiency of the adsorbent was investigated as a function of pH, contact time and adsorbent dose. The kinetics of adsorption and reusability potential of the adsorbent were also performed. A pseudo-second-order kinetics for mercury adsorption was observed. As prepared MoS2 nanosheets showed 93% mercury removal efficiency, whereas regenerated adsorbent showed 91% and 79% removal efficiency in the respective 2nd and 3rd cycles. The adsorption capacity of the adsorbent was found to be 289 mg/g at room temperature.  相似文献   

11.
• A high-efficiency N-doped porous carbon adsorbent for Cr(VI) was synthesized. • The maximum adsorption capacity of Cr(VI) reached up to 285.71 mg/g at 318K. • The potential mechanism for Cr(VI) adsorption by NHPC was put forward. • DFT analyzed the adsorption energy and interaction between NHPC and Cr(VI). To develop highly effective adsorbents for chromium removal, a nitrogen-doped biomass-derived carbon (NHPC) was synthesized via direct carbonation of loofah sponge followed by alkali activation and doping modification. NHPC possessed a hierarchical micro-/mesoporous lamellar structure with nitrogen-containing functional groups (1.33 at%), specific surface area (1792.47 m2/g), and pore volume (1.18 cm3/g). NHPC exhibited a higher Cr(VI) adsorption affinity than the HPC (without nitrogen doping) or the pristine loofah sponge carbon (LSC) did. The influence of process parameters, including pH, dosage, time, temperature, and Cr(VI) concentration, on Cr(VI) adsorption by NHPC were evaluated. The Cr(VI) adsorption kinetics matched with the pseudo-second-order model (R2≥0.9983). The Cr(VI) adsorption isotherm was fitted with the Langmuir isotherm model, which indicated the maximum Cr(VI) adsorption capacities: 227.27, 238.10, and 285.71 mg/g at 298K, 308K, and 318K, respectively. The model analysis also indicated that adsorption of Cr(VI) on NHPC was a spontaneous, endothermal, and entropy-increasing process. The Cr(VI) adsorption process potentially involved mixed reductive and adsorbed mechanism. Furthermore, computational chemistry calculations revealed that the adsorption energy between NHPC and Cr(VI) (−0.84 eV) was lower than that of HPC (−0.51 eV), suggesting that nitrogen doping could greatly enhance the interaction between NHPC and Cr(VI).  相似文献   

12.
• MES was constructed for simultaneous ammonia removal and acetate production. • Energy consumption was different for total nitrogen and ammonia nitrogen removal. • Energy consumption for acetate production was about 0.04 kWh/g. • Nitrate accumulation explained the difference of energy consumption. • Transport of ammonia and acetate across the membrane deteriorated the performance. Microbial electrosynthesis (MES) is an emerging technology for producing chemicals, and coupling MES to anodic waste oxidation can simultaneously increase the competitiveness and allow additional functions to be explored. In this study, MES was used for the simultaneous removal of ammonia from synthetic urine and production of acetate from CO2. Using graphite anode, 83.2%±5.3% ammonia removal and 28.4%±9.9% total nitrogen removal was achieved, with an energy consumption of 1.32 kWh/g N for total nitrogen removal, 0.45 kWh/g N for ammonia nitrogen removal, and 0.044 kWh/g for acetate production. Using boron-doped diamond (BDD) anode, 70.9%±12.1% ammonia removal and 51.5%±11.8% total nitrogen removal was obtained, with an energy consumption of 0.84 kWh/g N for total nitrogen removal, 0.61 kWh/g N for ammonia nitrogen removal, and 0.043 kWh/g for acetate production. A difference in nitrate accumulation explained the difference of total nitrogen removal efficiencies. Transport of ammonia and acetate across the membrane deteriorated the performance of MES. These results are important for the development of novel electricity-driven technologies for chemical production and pollution removal.  相似文献   

13.
• PA layer properties tune the primary nanochannels in MIL-101(Cr) TFN NF membranes. • The dense PA layer induced transition of primary nanochannels of TFN NF membranes. • Nanochannels around MOF contributed to the improved flux with a loose PA structure. • Nanochannels in MOFs dominated the separation performance with a dense PA structure. Metal organic framework (MOF) incorporated thin-film nanocomposite (TFN) membranes have the potential to enhance the removal of endocrine disrupting compounds (EDCs). In MOF-TFN membranes, water transport nanochannels include (i) pores of polyamide layer, (ii) pores in MOFs and (iii) channels around MOFs (polyamide-MOF interface). However, information on how to tune the nanochannels to enhance EDCs rejection is scarce, impeding the refinement of TFN membranes toward efficient removal of EDCs. In this study, by changing the polyamide properties, the water transport nanochannels could be confined primarily in pores of MOFs when the polyamide layer became dense. Interestingly, the improved rejection of EDCs was dependent on the water transport channels of the TFN membrane. At low monomer concentration (i.e., loose polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) in the polyamide layer could not dominate the membrane separation performance, and hence the extent of improvement in EDCs rejection was relatively low. In contrast, at high monomer concentration (i.e., dense polyamide structure), the hydrophilic nanochannels of MIL-101(Cr) were responsible for the selective removal of hydrophobic EDCs, demonstrating that the manipulation of water transport nanochannels in the TFN membrane could successfully overcome the permeability and EDCs rejection trade-off. Our results highlight the potential of tuning primary selective nanochannels of MOF-TFN membranes for the efficient removal of EDCs.  相似文献   

14.
• Complete CT degradation was achieved by employing HA to CP/Fe(II)/FA process. • Quantitative detection of Fe(II) regeneration and HO• production was investigated. • Benzoic acid outcompeted FA for the reaction with HO•. • CO2 was the dominant reductive radical for CT removal. • Effects of solution matrix on CT removal were conducted. Hydroxyl radicals (HO•) show low reactivity with perchlorinated hydrocarbons, such as carbon tetrachloride (CT), in conventional Fenton reactions, therefore, the generation of reductive radicals has attracted increasing attention. This study investigated the enhancement of CT degradation by the synergistic effects of hydroxylamine (HA) and formic acid (FA) (initial [CT] = 0.13 mmol/L) in a Fe(II) activated calcium peroxide (CP) Fenton process. CT degradation increased from 56.6% to 99.9% with the addition of 0.78 mmol/L HA to the CP/Fe(II)/FA/CT process in a molar ratio of 12/6/12/1. The results also showed that the presence of HA enhanced the regeneration of Fe(II) from Fe(III), and the production of HO• increased one-fold when employing benzoic acid as the HO• probe. Additionally, FA slightly improves the production of HO•. A study of the mechanism confirmed that the carbon dioxide radical (CO2), a strong reductant generated by the reaction between FA and HO•, was the dominant radical responsible for CT degradation. Almost complete CT dechlorination was achieved in the process. The presence of humic acid and chloride ion slightly decreased CT removal, while high doses of bicarbonate and high pH inhibited CT degradation. This study helps us to better understand the synergistic roles of FA and HA for HO• and CO2 generation and the removal of perchlorinated hydrocarbons in modified Fenton systems.  相似文献   

15.
• 23 available research articles on MPs in drinking water treatment are reviewed. • The effects of treatment conditions and MP properties on MP removal are discussed. • DWTPs with more steps generally are more effective in removing MPs. • Smaller MPs (e.g.,<10 μm) are more challenging in drinking water treatment. Microplastics (MPs) have been widely detected in drinking water sources and tap water, raising the concern of the effectiveness of drinking water treatment plants (DWTPs) in protecting the public from exposure to MPs through drinking water. We collected and analyzed the available research articles up to August 2021 on MPs in drinking water treatment (DWT), including laboratory- and full-scale studies. This article summarizes the major MP compositions (materials, sizes, shapes, and concentrations) in drinking water sources, and critically reviews the removal efficiency and impacts of MPs in various drinking water treatment processes. The discussed drinking water treatment processes include coagulation-flocculation (CF), membrane filtration, sand filtration, and granular activated carbon (GAC) filtration. Current DWT processes that are purposed for particle removal are generally effective in reducing MPs in water. Various influential factors to MP removal are discussed, such as coagulant type and dose, MP material, shape and size, and water quality. It is anticipated that better MP removal can be achieved by optimizing the treatment conditions. Moreover, the article framed the major challenges and future research directions on MPs and nanoplastics (NPs) in DWT.  相似文献   

16.
• Actual SAORs was determined using MLVSS and temperature. • Measured SAOR decreased with increasing MLVSS 1.1‒8.7 g/L. • Temperature coefficient (θ) decreased with increasing MLVSS. • Nitrification process was dynamically simulated based on laboratory-scale SBR tests. • A modified model was successfully validated in pilot-scale SBR systems. Measurement and predicted variations of ammonia oxidation rate (AOR) are critical for the optimization of biological nitrogen removal, however, it is difficult to predict accurate AOR based on current models. In this study, a modified model was developed to predict AOR based on laboratory-scale tests and verified through pilot-scale tests. In biological nitrogen removal reactors, the specific ammonia oxidation rate (SAOR) was affected by both mixed liquor volatile suspended solids (MLVSS) concentration and temperature. When MLVSS increased 1.6, 4.2, and 7.1-fold (1.3‒8.9 g/L, at 20°C), the measured SAOR decreased by 21%, 49%, and 56%, respectively. Thereby, the estimated SAOR was suggested to modify when MLVSS changed through a power equation fitting. In addition, temperature coefficient (θ) was modified based on MLVSS concentration. These results suggested that the prediction of variations ammonia oxidation rate in real wastewater treatment system could be more accurate when considering the effect of MLVSS variations on SAOR.  相似文献   

17.
•Wood and its reassemblies are ideal substrates to develop novel photocatalysts. •Synthetic methods and mechanisms of wood-derived photocatalysts are summarized. •Advances in wood-derived photocatalysts for organic pollutant removal are summed up. •Metal doping, morphology control and semiconductor coupling methods are highlighted. •Structure-activity relationship and catalytic mechanism of photocatalysts are given. Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years, because of the high abundance and renewability of wood as well as the high reaction activity and unique structural features of these materials. Herein, we present a comprehensive review of the current research activities centering on the development of wood-based nanocatalysts for photodegradation of organic pollutants. This review begins with a brief introduction of the development of photocatalysts and hierarchical structure of wood. The review then focuses on strategies of designing novel photocatalysts based on wood or its recombinants (such as 1D fiber, 2D films and 3D porous gels) using advanced nanotechnology including sol-gel method, hydrothermal method, magnetron sputtering method, dipping method and so on. Next, we highlight typical approaches that improve the photocatalytic property, including metal element doping, morphology control and semiconductor coupling. Also, the structure-activity relationship of photocatalysts is emphasized. Finally, a brief summary and prospect of wood-derived photocatalysts is provided.  相似文献   

18.
• RED performance and stack resistance were studied by EIS and LSV. • Interface resistance were discriminated from Ohmic resistance by EIS. • Impacts of spacer shadow effect and concentration polarization were analyzed. • Ionic short current reduced the power density for more cell pairs. • The results enabled to predict RED performance with different configurations. Reverse electrodialysis (RED) is an emerging membrane-based technology for the production of renewable energy from mixing waters with different salinities. Herein, the impact of the stack configuration on the Ohmic and non-Ohmic resistances as well as the performance of RED were systematically studied by using in situ electrochemical impedance spectroscopy (EIS). Three different parameters (membrane type, number of cell pairs and spacer design) were controlled. The Ohmic and non-Ohmic resistances were evaluated for RED stacks equipped with two types of commercial membranes (Type I and Type II) supplied by Fujifilm Manufacturing Europe B.V: Type I Fuji membranes displayed higher Ohmic and non-Ohmic resistances than Type II membranes, which was mainly attributed to the difference in fixed charge density. The output power of the stack was observed to decrease with the increasing number of cell pairs mainly due to the increase in ionic shortcut currents. With the reduction in spacer thickness from 750 to 200 µm, the permselectivity of membranes in the stack decreased from 0.86 to 0.79 whereas the energy efficiency losses increased from 31% to 49%. Overall, the output of the present study provides a basis for understanding the impact of stack design on internal losses during the scaling-up of RED.  相似文献   

19.
• Eco-friendly IONPs were synthesized through solvothermal method. • IONPs show very high removal efficiency for CeO2 NPs i.e. 688 mg/g. • Removal was >90% in all synthetic and real water samples. • >80% recovery of CeO2 NPs through sonication confirms reusability of IONPs. Increasing applications of metal oxide nanoparticles and their release in the natural environment is a serious concern due to their toxic nature. Therefore, it is essential to have eco-friendly solutions for the remediation of toxic metal oxides in an aqueous environment. In the present study, eco-friendly Iron Oxide Nanoparticles (IONPs) are synthesized using solvothermal technique and successfully characterized using scanning and transmission electron microscopy (SEM and TEM respectively) and powder X-Ray diffraction (PXRD). These IONPs were further utilized for the remediation of toxic metal oxide nanoparticle, i.e., CeO2. Sorption experiments were also performed in complex aqueous solutions and real water samples to check its applicability in the natural environment. Reusability study was performed to show cost-effectiveness. Results show that these 200 nm-sized spherical IONPs, as revealed by SEM and TEM analysis, were magnetite (Fe3O4) and contained short-range crystallinity as confirmed from XRD spectra. Sorption experiments show that the composite follows the pseudo-second-order kinetic model. Further R2>0.99 for Langmuir sorption isotherm suggests chemisorption as probable removal mechanism with monolayer sorption of CeO2 NPs on IONP. More than 80% recovery of adsorbed CeO2 NPs through ultrasonication and magnetic separation of reaction precipitate confirms reusability of IONPs. Obtained removal % of CeO2 in various synthetic and real water samples was>90% signifying that IONPs are candidate adsorbent for the removal and recovery of toxic metal oxide nanoparticles from contaminated environmental water samples.  相似文献   

20.
• Nano Fe2O3 and N-doped graphene was prepared via a one-step ball milling method. • The maximum power density of Fe-N-G in MFC was 390% of that of pristine graphite. • Active sites like nano Fe2O3, pyridinic N and Fe-N groups were formed in Fe-N-G. • The improvement of Fe-N-G was due to full exposure of active sites on graphene. Developing high activity, low-cost and long durability catalysts for oxygen reduction reaction is of great significance for the practical application of microbial fuel cells. The full exposure of active sites in catalysts can enhance catalytic activity dramatically. Here, novel Fe-N-doped graphene is successfully synthesized via a one-step in situ ball milling method. Pristine graphite, ball milling graphene, N-doped graphene and Fe-N-doped graphene are applied in air cathodes, and enhanced performance is observed in microbial fuel cells with graphene-based catalysts. Particularly, Fe-N-doped graphene achieves the highest oxygen reduction reaction activity, with a maximum power density of 1380±20 mW/m2 in microbial fuel cells and a current density of 23.8 A/m2 at –0.16 V in electrochemical tests, which are comparable to commercial Pt and 390% and 640% of those of pristine graphite. An investigation of the material characteristics reveals that the superior performance of Fe-N-doped graphene results from the full exposure of Fe2O3 nanoparticles, pyrrolic N, pyridinic N and excellent Fe-N-G active sites on the graphene matrix. This work not only suggests the strategy of maximally exposing active sites to optimize the potential of catalysts but also provides promising catalysts for the use of microbial fuel cells in sustainable energy generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号