首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Municipal solid waste (MSW) disposal and management is one of the most significant challenges faced by urban communities around the world. Municipal solid waste management (MSWM) over the years has utilized many sophisticated technologies and smart strategies. Municipalities worldwide have pursued numerous initiatives to reduce the environmental burden of the MSW treatment strategies. One of the most beneficial MSWM strategies is the thermal treatment or energy recovery to obtain cleaner renewable energy from waste. Among many waste-to-energy strategies, refuse-derived fuel (RDF) is a solid recovered fuel that can be used as a substitute for conventional fossil fuel. The scope of this study is to investigate the feasibility of RDF production with MSW generated in Metro Vancouver, for co-processing in two cement kilns in the region. This study investigates environmental impacts and benefits and economic costs and profits of RDF production. In addition, RDF utilization as an alternative fuel in cement kilns has been assessed. Cement manufacturing has been selected as one of the most environmentally challenged industries and as a potential destination for RDF to replace a portion of conventional fossil fuels with less energy-intensive fuel. A comprehensive environmental assessment is conducted using a life cycle assessment (LCA) approach. In addition, cost–benefit analysis (CBA) has been carried out to study the economic factors. This research confirmed that RDF production and use in cement kilns can be environmentally and economically viable solution for Metro Vancouver.  相似文献   

2.
Organic soil improvers are mainly used for their potential for preventing soil losses. This study investigates the physicochemical properties of six different organic soil improvers and their effects on the properties and productivity of reconstituted anthropic soils during short-term application compared to farm manure. Treatment materials were obtained from Tunisian agricultural waste composts (almond shell (AS), sesame bark (SB), olive cake (OC), olive mill wastewater sludge (OMWS) and poultry manure (PM)) as well as mixtures of compost-manure (CM). The characterization of soil conditioners shows that (i) nitrogen contents are higher in olive wastes and PM-based composts; (ii) carbon/nitrogen ratio (C/N) and the organic matter (OM) contents are in the ranges of 14.1-29.7 and 19.3-64.5%, respectively; (iii) the electrical conductivity (EC) is higher in manure (M) and compost-manure mixture (4.8-10.4 mS/cm) and (iv) pH values are alkaline (8.2-8.8). Treatments were applied as components of a reconstituted soil at a rate of 14 kg/m2. Except for the manures, the mixtures of soil and treatment material (in a ratio of 600 L/28 kg) were placed in metallic basins to form the reconstituted anthropic soil. Plot areas of 2 m2 were used for each treatment and 2 × 2 m2 for the control. An assessment of the geochemical properties of soils during the cultivation period reveals variations in soil organic matter (SOM) contents as well as pH and EC values. Soil productivity is determined by quantitative and qualitative comparison of tomato fruits obtained from each plot amended with manure-treated soil.  相似文献   

3.
One of the techniques used to dispose of 4,000 tons per day (TPD) of non‐recyclable waste from Tehran is to burn it as an alternative fuel in cement kilns. This practice reduces emissions from landfills, prevents the loss of waste energy, and conserves fossil fuel resources. The aim of our study was to conduct a life cycle assessment (LCA) of clinker production in cement kilns using a combination of natural gas, mazut, a form of heavy, low‐quality fuel oil, and refuse‐derived fuel (RDF) from Tehran. We used SimaPro 7.1 software to perform an LCA of 1 kilogram (kg) of clinker produced using the following fuel combinations: the first scenario involved natural gas consumption alone, the second scenario involved a combination of natural gas and mazut, with the mazut providing 5% to 30% of the heating value needed to produce cement clinker in the kiln, and the third scenario involved a combination of natural gas and RDF (providing 5% to 30% of the heating needed in the kiln). The impact categories in the LCA of global warming, eutrophication, and acidification were assessed by the Center of Environmental Science of Leiden University (Centrum voor Milieukunde Leiden—CML) CML 2000 method. The results indicated that the third scenario, involving natural gas and RDF, reduced acidification by 2.14–11.5% and global warming by 0–1.3% relative to the first scenario involving the use of only natural gas. In addition, we observed a 0.65–3.81% reduction in acidification and a 0.9–3.8% reduction in global warming under the third scenario compared with the second scenario (co‐firing of natural gas and mazut). The amount of nitrogen oxides (NOX) emitted from the combustion of the Tehran RDF was greater than that was emitted when burning mazut. Therefore, reduction of nitrogen from the RDF composition is necessary. This study indicates that the use of Tehran RDF (with reduced nitrogen) in Tehran cement kilns does not increase cement kiln NOX, sulfur dioxide (SO2), and carbon dioxide (CO2) emissions; however, we need to conduct additional investigation into the chemical composition of the Tehran waste before using solid waste in place of fossil fuels.  相似文献   

4.
A debate is still open on issues of waste to energy methodologies aiming to answer to questions of particular relevance, such as whether the concept of SRF/RDF production can be applied directly to MSW through the Mechanical–Biological Treatment (MBT) process, when selective collection acts as a virtual pre-treatment of the same, or if the use of SRF/RDF as alternative fuel in cement kilns is the most sustainable solution. In this study, two scenarios were analyzed and compared: (a) the use of SRF in a new dedicated thermal plant for electricity production and (b) the use of SRF as an alternative fuel in an existing cement plant. The comparative assessment was based on principles of Sustainable Waste Management embracing technical and cost issues, environmental protection, industrial ecology and symbiosis. The application of SWOT analysis showed that the use of SRF in cement kilns is more sustainable compared to its use in a new dedicated plant for electricity production.  相似文献   

5.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling.  相似文献   

6.
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers.  相似文献   

7.
Nowadays, it is very important that water and energy resources are used appropriately as this is a challenge to promote sustainable development. In some sectors, such as water and sewerage utilities, energy consumption depends on water consumption. The main objective of this work is to estimate the potential for electricity savings in a water and sewerage utility by reducing potable water consumption in the residential, commercial and public sectors in the city of Florianópolis, southern Brazil. These three sectors account for 98.9% of the total water consumption in the city. By using data related to energy consumption and costs that apply to the local water utility for water and sewage treatment, and also the potential for potable water savings over the three sectors, it is possible to estimate the potential for energy savings by reducing potable water consumption and sewage treatment. Potable water savings were estimated by using data available in the literature about water end-uses for different types of buildings located in Florianópolis. Three options were considered: installing dual-flush toilets, reusing greywater and using rainwater. The average potential for potable water savings were 30.0%, 53.4% and 60.3%, respectively, for the residential, commercial and public sectors. Thus, the average potable water savings amount to about 10,153,835 m3/year, and the electricity savings amount to 4.4 GW h/year, which would be enough to supply 1217 houses or flats in Florianópolis, with an average energy consumption of 300 kW h/month.  相似文献   

8.
The use of recycled concrete aggregates (RCA) in applications other than road sub-layers is limited by two factors: the high porosity of RCA in comparison with natural aggregates, and the restrictions set forth in standards and building codes. Research efforts aimed at alleviating these restrictions are focused on improving the quality of coarse RCAs by reducing the amount of adhered cement pastes, which is the weakest element in this system and influences the rheological behaviour.This paper presents an analysis of the environmental impacts of the recent mechanical and thermo-mechanical processing techniques which produce high performance RCA by reducing the volume of adhered cement paste. Based on published data, processing scenarios were established. These scenarios permit making rough estimates of energy consumption, CO2 emissions, fines generation and product quality. Using these data and the available emission factors from several countries, an objective comparison was made between these innovating processes and conventional recycling.The production of fines increases from 40% up to as much as 70% as the volume of adhered cement paste on the RCA is reduced. Fuel fed thermo-mechanical process energy consumption, per tonne of recycled aggregate, varies between 36 and 62 times higher than conventional recycling processes. Mechanical processing, combined with microwave heating, increases energy consumption from 3 to a little more than 4 times conventional recycling. Consequently, CO2 emissions released by conventional coarse aggregate production go from 1.5 to 4.5 kgCO2/t, to around 200 kgCO2/t, for that of fossil fuel fed thermo-mechanical treatments.Mechanical and mechanical/microwave treatments appear to have the greatest environmental potential. Notwithstanding, the further development of markets for fines is crucial for reducing environmental loads.  相似文献   

9.
近年来,天然气消费量迅速增长,天然气领域的投入和天然气储量、产量和贸易量也呈迅速增长态势,并显示出增长的巨大潜力。天然气市场需求量的大幅度增加与国内天然气供给不足造成的供需不平衡,给天然气供气业务带来了极大的挑战。本文根据近两年来天然气供应面临的危机,分别对天然气供气产业链的上、中、下游的突发事件风险进行分析;并针对供气业务中断带来的风险,从突发事件分级、应急处置流程等两个关键要素着手对应急预案进行优化。该研究对完善天然气供气突发事件应急预案、有效快速应对突发事件提供了参考和指导。  相似文献   

10.
The U.S. Geological Survey is conducting a combined pre/post‐closure assessment at a long‐term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine‐active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine‐disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2‐km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β‐estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater‐derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.  相似文献   

11.
Environmental impact and management of phosphogypsum   总被引:2,自引:0,他引:2  
The production of phosphoric acid from natural phosphate rock by the wet process gives rise to an industrial by-product called phosphogypsum (PG). About 5 tons of PG are generated per ton of phosphoric acid production, and worldwide PG generation is estimated to be around 100–280 Mt per year. This by-product is mostly disposed of without any treatment, usually by dumping in large stockpiles. These are generally located in coastal areas close to phosphoric acid plants, where they occupy large land areas and cause serious environmental damage. PG is mainly composed of gypsum but also contains a high level of impurities such as phosphates, fluorides and sulphates, naturally occurring radionuclides, heavy metals, and other trace elements. All of this adds up to a negative environmental impact and many restrictions on PG applications. Up to 15% of world PG production is used to make building materials, as a soil amendment and as a set controller in the manufacture of Portland cement; uses that have been banned in most countries. The USEPA has classified PG as a “Technologically Enhanced Naturally Occurring Radioactive Material” (TENORM).  相似文献   

12.
Bioenergy production from biomass is proposed as a method to solve part of the nation's energy problem. However, biomass and bioenergy production is questioned as an environment-friendly approach due to the potential increase of water pollution and the potential decrease of available water resource. A conceptual model of an integrated natural waste treatment system that produces biogas and biomass for bioenergy, treat waste and wastewater, conserve fresh water, and decrease the potential water pollution is presented. The potential biomass production from water hyacinth, duckweed, cattail, and knotgrass was investigated using recycling wastewater from an integrated natural waste treatment system from 2005 to 2008. Although the biomass production from recycling wastewater was not controlled for maximum production, this research identified the large potential impact that could be made if these systems were implemented. The overall average water hyacinth growth rate was high to 0.297 kg wet wt./m2/day during a research period of over 500 days, including both the active and non-active growing seasons. The average daily growth rates of duckweed, cattail, and knotgrass were 0.099-0.127, 0.015, and 0.018 kg wet wt./m2, respectively. This research illustrated that water hyacinth was a more promising aquatic plant biomass for bioenergy production when wastewater effluent was recycled as water and nutrient sources from an integrated natural waste treatment system.  相似文献   

13.
A septic tank (ST)/engineered wetland coupled system used to treat and recycle wastewater from a small community in Dar es Salaam, Tanzania was monitored to assess its performance. The engineered wetland system (EWS) had two parallel units each with two serial beds packed with different sizes of media and vegetated differently. The larger-sized medium bed was upstream and was planted with Phragmites (reeds) and the smaller-sized medium bed was downstream and was planted with Typha (cattails). The ST/EWS coupled system was able to remove ammonia by an average of 60%, nitrate by 71%, sulfate by 55%, chemical oxygen demand by 91%, and fecal coliform as well as total coliform by almost 100%. The effluent from the ST/EWS coupled system is used for irrigation. Notably, users of the recycled irrigation water do not harbor any negative feelings about it. This study demonstrates that it is possible to treat and recycle domestic wastewater using ST/EWS coupled systems. The study also brings attention to the fact that an ST/EWS coupled system has operation and maintenance (O&M) needs that must be fulfilled for its effectiveness and acceptability. These include removal of unwanted weeds, harvesting of wetland plants when the EWS becomes unappealingly bushy, and routine repair.  相似文献   

14.
In developing and populated cities such as Tehran, a massive amount of municipal solid waste (MSW), both wet and dry, is transferred to landfills daily. Combustion is one of the most common methods of using mixed waste energy from the past to the present. The Dulong formula is widely used to calculate the energy released from MSW combustion. According to the constituent components of Tehran MSW, removing food waste leads to an increase in energy potential, which will be a suitable condition for energy production. In this work, the energy derived from the combustion of mixed and separated dry MSW generated in Tehran was calculated using the experimental Dulong formula and tables in Integrated Solid Waste Management (Tchobanoglous et al. 1993, McGraw‐Hill). The Dulong formula indicates that the use of Tehran mixed MSW (without separating materials for recycling) as a fuel source yields 8,966.40 KJ/kg while the use of Tchobanoglous et al. (1993) tables can generate 8,236 kJ/kg. By removing food waste and recyclable materials, the potential of energy production changes to 22,047 kJ/kg using the Dulong formula and 16,207 kJ/kg and the Tchobanoglous et al. (1993) tables. It indicates increase by 1.46 times and 46%, respectively. Regarding the 200‐ton capacity of the Tehran waste incinerator, the Dulong formula indicated generation of 4,409 MJ/day energy, and the Tchobanoglous et al. table presents 3,241 MJ/day. Therefore, considering that Tehran generates more than 4,000 tons of reject waste daily, it can easily be converted to energy rather than landfilled. This can alleviate the problem of buying land and construction of landfills and leachate generation.  相似文献   

15.
Pyrolysis is considered as possible technique to thermally convert waste plastics into chemicals and energy. Literature on experimental findings is extensive, although experiments are mostly performed in a dynamic heating mode, using thermogravimetric analysis (TGA) and at low values of the heating rate (mostly below 30 K/min). The present research differs from literature through the application of far higher heating rates, up to 120 K/min. The use of these dynamic results to define the reaction kinetics necessitates the selection of an appropriate reaction mechanism, and 21 models have been proposed in literature considering the rate limiting step being diffusion, nucleation or the reaction itself.The current research studied the cracking of PET and PS by TGA at different heating rates (temperature ramps). Results were used to check the validity of the proposed mechanisms. Several conclusions are drawn: (i) to obtain fair results, the heating ramp should exceed a minimum value, calculated at 30 K/min for PET and 80 K/min for PS; (ii) application of the majority of the models to experimental findings demonstrated that they do not meet fundamental kinetic considerations and are questionable in their use; and (iii) simple models, with reaction order 1 or 2, provide similar results of the reaction activation energy.A further comparison with literature data for dynamic and isothermal experiments confirms the validity of these selected models. Since TGA results are obtained on a limited amount of sample, with results being a strong function of the applied heating rate, the authors believe that isothermal experiments, preferably on a large scale both towards equipment and/or sample size, are to be preferred.  相似文献   

16.
The effects of pollutants on primary producers ramify through ecosystems because primary producers provide food and structure for higher trophic levels and they mediate the biogeochemical cycling of nutrients and contaminants. Periphyton (attached algae) were studied as part of a long-term biological monitoring program designed to guide remediation efforts by the Department of Energy’s Y-12 National Security Complex on East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee. High concentrations of nutrients entering EFPC were responsible for elevated periphyton production and placed the stream in a state of eutrophy. High rates of primary production at upstream locations in EFPC were associated with alterations in both invertebrate and fish communities. Grazers represented >50% of the biomass of invertebrates and fish near the Y-12 Complex but <10% at downstream and reference sites. An index of epilithic periphyton production accounted for 95% of the site-to-site variation in biomass of grazing fish. Analyses of heavy metals in EFPC periphyton showed that concentrations of zinc, cadmium, copper and nickel in periphyton decreased exponentially with distance downstream from Y-12. Zinc uptake by periphyton was estimated to reduce the concentration of this metal in stream water ~60% over a 5-km reach of EFPC. Management options for mitigating eutrophy in EFPC include additional reductions in nutrient inputs and/or allowing streamside trees to grow and shade the stream. However, reducing periphyton growth may lead to greater downstream transport of contaminants while simultaneously causing higher concentrations of mercury and PCBs in fish at upstream sites.  相似文献   

17.
The loss of phosphorus and sediment to surface waters can impair their quality. It was hypothesized that the practice of winter grazing dairy cattle on cropland of moderate slope (5-20%) would exacerbate the loss of P and suspended sediment (SS) from land to water. In a small (4.3 ha) catchment two flumes were installed, upstream and downstream of one field (about 2 ha) that had been cropped for 2 yr and grazed in winter (June-July) by dairy cattle. Flow proportional samples were taken and measured for dissolved reactive phosphorus (DRP), particulate phosphorus (PP), total phosphorus (TP), and SS. During the 2002 hydrologic year (March-February) loads of SS increased per hectare downstream (1449 kg ha(-1)) compared to upstream (880 kg ha(-1)). The same increase from upstream (873 kg ha(-1)) to downstream (969 kg ha(-1)) happened in 2003. However, while in 2003 TP increased downstream by 1.64 kg ha(-1) compared to upstream (0.24 kg ha(-1)), in 2002 an increase of only 0.006 kg ha(-1) at the downstream flume occurred compared to upstream (0.98 kg ha(-1)). Investigation of P transport pathways suggested that overland flow contributed <0.1 kg P ha(-1) to stream flow, 10 and 5% of TP load in 2002 and 2003, with the greater load in 2002 reflecting more rainfall in that year. The contribution to stream flow by subsurface flow was estimated at 0.3 kg P ha(-1). Stream bed sediments showed an increase in total P concentration in summer when no flow occurred due to the admission by the farmer of 10 cattle upstream of the cropped paddock in summer 2001-2002 and 20 cattle between the two flumes in 2003 to graze stream banks. This action was calculated to contribute via dung at least, the remaining P lost: about 0.5 kg P in 2002 and 1.0 kg P in 2003. Clearly, not allowing animals to "clear-up" stream banks is a priority if good surface water quality is to be achieved. Furthermore, compared to stock access the impact of winter grazing cropland on P losses was minimal, but SS load was increased by an average of 75%.  相似文献   

18.
The increasing use and subsequent accumulation of polystyrene containers has triggered a substantial environmental problem. This study investigated using varied percentages of solid waste polystyrene disposable food dishes in the production of lightweight concrete samples with 350 kilograms per cubic meter (kg/m3) of cement and a density of 1,300 kg/m3. The polystyrene disposable dishes were ground into beads of 0–3 millimeters (mm) and 3–6 mm in size. First, the characteristics of Type II Portland cement, polystyrene, and aggregates were examined. The following characteristics of concrete using ASTM International and British Standards Institution standards were tested: slump, compressive strength, ability to resist chloride ion penetration, and resistance of concrete to rapid freezing and thawing cycles. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy analytical techniques were also used. The slump of samples varied between 40 and 70 mm and was not dependent on either the polystyrene percentage or the size of the polystyrene beads in the concrete samples (p‐value > .05). The compressive strength of the concrete samples after 90 days of curing, and using different percentages of polystyrene, varied between 96 and 113 kilograms per square centimeter (kg/cm2). The resistance of the samples to the freezing and thawing cycle and chloride ion penetration were affected unfavorably by the presence of the polystyrene. The SEM technique indicated that concrete samples containing 15% and 25% polystyrene had denser crystals and less void than concrete samples with 40% and 55% polystyrene.  相似文献   

19.
Commercially available adsorption cooling systems use water/silica gel, water/zeolite and ammonia/ chloride salts working pairs. The water-based pairs are limited to work above 0°C due to the water high freezing temperature, while ammonia has the disadvantage of being toxic. Ethanol is a promising refrigerant due to its low freezing point (161 K), nontoxicity, zero ozone depletion, and low global warming potential. Activated carbon (AC) is a porous material with high degree of porosity (500–3000 m2/g) that has been used in wide range of applications. Using Dynamic Vapour Sorption (DVS) test facility, this work characterizes the ethanol adsorption of eleven commercially available activated carbon materials for cooling at low temperature of ?15°C. DVS adsorption results show that Maxsorb has the best performance in terms of ethanol uptake and adsorption kinetics compared to the other tested materials. The Maxsorb/ethanol adsorption process has been numerically modeled using computational fluid dynamics (CFD) and simulation results are validated using the DVS experimental measurements. The validated CFD simulation of the adsorption process is used to predict the effects of adsorbent layer thickness and packing density on cycle uptake for evaporating temperature of ?15°C. Simulation results show that as the thickness of the Maxsorb adsorbent layer increases, its uptake decreases. As for the packing density, the amount of ethanol adsorbed per plate increases with the packing density reaching maximum at 750 kg/m3. This work shows the potential of using Maxsorb/ethanol in producing low temperature cooling down to ?15°C with specific cooling energy reaching 400 kJ/kg.  相似文献   

20.
The objective of this study was to study the performances of six 200-L polyethylene bins, each with different design for passive aeration to organic wastes composting. Food scraps and dry leaves (1.6 kg) were added to each bin once a day until the bin was full. Temperatures at the middle portion were measured daily. The compost from each bin was taken once a week for 120 days for analysis of C, N, volatile solids, and a germination index once a week for 120 days. After 120 days, the compost sample from each bin was taken to determine the mass reduction, size distribution, CEC, N, P and K values. The results showed that the temperatures inside the bins were in the ranges of 24 °C-57 °C. The composts in all bins were found to be stable at around 56-91 days. The wastes decayed fastest in bins with lateral and vertical systems of natural ventilation. It took about two months to stabilize the organic wastes, with a 59-62% decrease of mass. The C/N ratio, CEC, N, P, and K values of the final composts were 14.8-16.0, 66-68 cmol/kg, and 1.26-1.50% N, 0.52-0.56% P2O5 and 1.66-1.92% K2O, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号