首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
采用生物技术处理住宅生活污水的试验研究   总被引:1,自引:0,他引:1  
本文报道了在常温条件下,采用以生物厌氧消化为主,辅以生物兼性好氧处理的厌氧-兼性好氧生物二级处理的生物系统工程,对典型的高浓度住宅生活污水进行处理。在进水CODcr浓度为750~1,000mg/1(最高达1,2000mg/1),BOD_5为350mg/1,水力滞留期2.5~3天,经生物二级处理后,其出水各项理化指标测试数据均达到四川省环境污染物排放试行标准中第三种水污染物一类水域乙级排放标准:pH6~9,CODcr200mg/1,BOD_560mg/1,SS300mg/1的要求,且在厌氧消化过程中尚能回收一定数量的生物质能源—沼气。试验研究结果表明,卫生效益好,社会效益和环境效益突出,达到了试验的目的。  相似文献   

2.
厌氧发酵沼气工程的工艺及存在的问题   总被引:2,自引:0,他引:2  
利用厌氧消化技术处理畜禽养殖废水,制取清洁能源——沼气,在治理污染的同时变废为宝,减少温室气体的排放,从而实现国民经济的可持续性发展。本文概述了集约化畜禽养殖场废污水处理中采用的厌氧发酵工艺,以及厌氧发酵沼气工程中存在的问题。  相似文献   

3.
<正>由中持水务股份有限公司开发的市政污泥分级分相厌氧消化技术,适用于含水量约80%的污泥处置。主要技术内容一、基本原理采用高温水解酸化、中温甲烷化分级分相两级反应系统,提高污泥可生化性,破解了污泥厌氧消化的限速步骤。厌氧消化时间比单级单相厌氧消化缩短30%,污泥有机物降解率大于50%,沼气产率提高35%。  相似文献   

4.
污水厂污泥与厨余垃圾厌氧/混合厌氧消化研究进展   总被引:2,自引:0,他引:2  
李磊 《四川环境》2011,30(2):93-96
本文主要对国内外城市污水厂污泥与厨余垃圾混合厌氧消化的研究进行了综述,介绍了厌氧消化技术在污水厂污泥和厨余垃圾处理处置中的应用,对两种废物单独厌氧消化和混合厌氧消化技术进行了比较,分析了城市污水厂污泥与厨余垃圾混合厌氧消化的可行性以及工艺参数对混合厌氧消化的影响,并对城市污水厂污泥与厨余垃圾的混合厌氧消化技术的研究和应用提出了展望。  相似文献   

5.
介绍了餐厨垃圾的特点,针对餐厨垃圾在厌氧消化过程中容易出现的酸化抑制,梳理了目前常用的缓冲溶液添加、多元物料混合厌氧消化和两相厌氧消化等酸化调控技术,以及处于研发阶段的生物预处理、添加生物炭、驯化培养耐酸型产甲烷菌等酸化调控技术。比较了各种技术的优势与不足,提出未来的技术路径和研究方向,以期为餐厨垃圾厌氧消化工程的稳定运行提供技术支撑。  相似文献   

6.
为探索餐厨垃圾和市政污泥联合高温厌氧消化的可行性。在一个50m~3的CSTR反应器模拟实际工程运行条件,结果表明,当水力停留时间20d以上,餐厨和污泥比例为4∶1时,沼气产量和甲烷浓度相比单纯餐厨垃圾厌氧消化分别提高了34.2%和8.1%,硫化氢浓度降低了65%。通过餐厨垃圾和市政污泥联合厌氧,既提高了反应器的稳定性和处理能力,又增加了沼气产出与品质,是城市有机固废协同处理的新途径。  相似文献   

7.
固体厌氧消化原料流变特性研究综述   总被引:2,自引:0,他引:2  
厌氧消化原料的流变特性是厌氧消化工艺设计和运行的重要参数。本文从研究对象、实验操作、研究内容和结果、影响因素以及发展方向等方面对固体厌氧消化原料,特别是污泥的流变特性研究现状进行了概述。研究表明,污泥来源广泛,成分复杂,属于非牛顿流体的范畴,其流变特性受多种因素影响,其中污泥的总悬浮固体(TSS)(或混合液悬浮固体(MLSS))和温度是最主要的影响因素。大部分研究采用层流剪切实验对物料的流变特性进行表征,研究对象范围有待于扩大。尚需针对流体本构方程的改进,共消化对于原料流变特性的影响,混合液固、液相指标与流变参数的关系等方面开展研究,为利用流变参数作为工艺控制参数提供理论依据,并解决工程放大等问题。  相似文献   

8.
本文以实际猪场沼气废水为研究对象,以ASBR为反应器,接种厌氧消化污泥培养厌氧氨氧化细菌,厌氧氨氧化阶段成功启动后,研究了厌氧氨氧化脱氮最佳运行工艺。试验研究表明,厌氧氨氧化反应适宜的温度在35(±1)℃之间,适宜的pH在7.5—8.0之间,HRT选用24h。当达到最佳运行参数时,NH4+-N的去除率达到87.6%,NO2- -N的去除率达到99.96%。  相似文献   

9.
先将剩余污泥进行低温热水解预处理,其后测定生物化学甲烷势(BMP)来研究热水解对剩余污泥厌氧消化性能的影响。结果表明:污水厂剩余污泥经低温热水解处理可使污泥固体溶解和水解,从而提高剩余污泥厌氧消化性能。最适宜的热水解条件为70℃,24 h,此时剩余污泥TCOD去除率由18%提高到30%,热水解处理后沼气产量提高63%。  相似文献   

10.
陈玉谷 《四川环境》1991,10(3):5-11
本文在简要地报道了赴西欧荷兰考察废水厌氧处理技术和科研进展概况后,重点介绍高效厌氧工艺UASB(上流式厌氧污泥床)的设计特点、研究进展和在(?)水厌氧处理中生产规模虚用情况与UASB反应器相匹配的关键生物枝术—高活性厌氧污泥颗粒化研究应用进展,有关颗粒污泥形状、类型、微生物组成、形成机理及厌氧活性污泥颗粒化的主要影响因素等,希望能借鉴国外先进厌氧工艺UASB及其厌氧颗粒化污泥培养技术应用于我国废水厌氧处理中,为提高我国废水厌氧消化技术水平提供参考。  相似文献   

11.
Pistachio processing wastes create significant waste management problems unless properly managed. However, there are not well-established methods to manage the waste generated during the processing of pistachios. Anaerobic digestion can be an attractive option not only for the management of pistachio processing wastes but also producing renewable energy in the form of biogas. This study investigated anaerobic digestibility and biogas production potential of pistachio de-hulling waste from wet de-hulling process. Best to our knowledge, this is the first report on biogas production from pistachio de-hulling waste. The results indicated that (1) anaerobic digestion of pistachio de-hulling wastewater, solid waste, and their mixtures in different ratios is possible with varying levels of performance; (2) 1 L of de-hulling wastewater (chemical oxygen demand concentration of 30 g/L) produced 0.7 L of methane; (3) 1 L of de-hulling wastewater and 20 g of pistachio de-hulling solid waste produced 1.25 L of methane; and (4) 1 g of de-hulling solid waste produced 62.6 mL of methane (or 134 mL of biogas).  相似文献   

12.
Production of biogas from animal wastes could lessen the problems of energy shortage and indiscriminate animal waste disposal. A study of anaerobic digestion of selected ratios of cattle, swine, and poultry wastes was carried out to evaluate their biogas yields. Cattle (C), swine (S), and poultry (P) wastes were mixed as C:S:P in the following ratios: 1:0:0 (control), 1:0:1, 4:1:3, 2:1:1, 4:3:1, and 1:1:0 by mass to obtain six samples of of 0.4 kg each, referred to as samples 1 to 6 respectively. A quantity (0.1 kg) of inoculum (obtained by pre-fermenting equal masses of poultry waste and water for 50 days under anaerobic condition) and 0.5 kg of water were added to each of the samples. The resulting slurries were digested in triplicates for 30 days in 1.3 L laboratory-scale anaerobic digesters. The volume of biogas produced was obtained by downward displacement of water in a measuring cylinder. The cumulative biogas yields of samples 1 to 6 were 332.5, 497.5, 487.5, 467.5, 457.5, and 430.0 cm3/kg slurry respectively. The cumulative biogas yields of samples 2 and 3 were significantly (p < 0.05) higher than those of the other samples but not significantly (p > 0.05) different from each other. However, the cumulative biogas yield of sample 1 was significantly (p < 0.05) lower than those of the other samples. The study revealed that a blend of equal masses of cattle and poultry wastes is optimum for biogas production.  相似文献   

13.
Biogas production from anaerobic digestion has increased rapidly in the last years, in many parts of the world, mainly due to its local scale disposition and to its potential on greenhouse gases (GHG) emissions mitigation. Biogas can be used as fuel for combined heat and power systems (CHP), in particular for internal combustion engines (ICEs). In recent investigations, fuel cells have been considered as alternative CHP systems. In the present article, two different energy conversion systems are compared: a 1.4 MW class MCFC system, running on pipeline natural gas, and an in situ ICE, running on biogas. In the first case, biogas is considered as a source fuel to obtain upgraded gas to be injected in the natural gas grid. In such scenario, the location of the fuel cell power plant is no longer strictly connected to the anaerobic digester site. Several energy balances are evaluated, considering different upgrading techniques and different biogas methane/carbon dioxide ratios.  相似文献   

14.
采用逐渐提高有机负荷的半连续进料方式,研究中温(35℃左右)条件下,猪粪为接种物,厌氧消化焚烧发电厂垃圾渗滤液的消化规律。试验以5%为单位,由5%体积负荷渗滤液起开始填料,逐步提高至35%的体积负荷。试验进行的7个负荷,消化系统pH值稳定在7.2~7.8之间,碱度、氨氮浓度较高,分别在7803~17948 mg/L、673~1630 mg/L之间,为系统提供了良好的酸碱缓冲环境。低负荷时,VFA值较低,生物气中甲烷含量稳定在60%左右;高负荷时,随着渗滤液的加入,VFA值波动较大,甲烷含量也随VFA值的变化起伏波动(25%负荷时,甲烷含量出现峰值,高达75.5%)。消化系统共进料2800 mL渗滤液(即197.3 gCODCr),累计产气量83086 mL,平均每gCODCr产沼气约421.1 mL(平均gCODcr产甲烷约273.7 mL)。进水渗滤液CODCr浓度为70472 mg/L,实验结束时,消化液CODCr浓度降至3373 mg/L,CODCr去除率高达95.2%。  相似文献   

15.
It is well known that dilute sulfuric acid pretreatment of the lignicellulosisc biomass is an effective approach used for the production of the ethanol. However, there are less studies on the biogas production from the pretreated lignocellulosics and hardly data available on the codigestion of cattle manure with the pretreated lignocellulosisc material. The aim of this study was to evaluate biomethane production potential of codigestion of cattle manure with dilute acid pretreated lignocellulosic biomass. Sugarcane bagasse and rice husk was pretreated with dilute sulfuric acid or phosphoric acid at 121°C for 20 minutes and subsequently subjected to anaerobic digestion alone or codigested with cattle manure.

The results showed that codigestion of 1% phosphoric acid pretreated rice husk with cattle manure led to the highest methane production of 115 Nmlg?1VS while monodigestion of cattle manure and phosphoric acid pretreated rice husk produced 98 and 87 Nmlg?1VS, respectively. An inhibition was observed in anaerobic digestion of sulfuric acid pretreated rice husk and sugarcane bagasse during monodigestion and codigestion with cattle manure.

The study concludes that dilute phosphoric acid pretreated lignocellulosics like sugarcane bagasse and rice husk can be used as a cosubstrate with cattle manure in anaerobic digestion for enhanced methane production. Dilute sulfuric acid pretreatment, which is effective method for the bioethanol production, causes inhibition during anaerobic digestion of the pretreated lignocellulosics.  相似文献   

16.
The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46–2.51 g volatile solids (VS) l−1 d−1, of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.  相似文献   

17.
Storage of manure makes a significant contribution to global methane (CH4) emissions. Anaerobic digestion of pig and cattle manure in biogas reactors before outside storage might reduce the potential for CH4 emissions. However, manure pre-stored at 15 to 20 degrees C in buildings before anaerobic digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20 degrees C for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre-storage. The results show substantial methane and carbon dioxide production from animal manure in an open fed-batch system kept at 15 to 20 degrees C, even for short storage times, but the influence of temperature was not significant at storage times of <30 d. During long-term storage (90 d), a strong influence of temperature on the MCF value, especially for pig manure, was observed.  相似文献   

18.
The increase in animal and agro-industrial production must be accompanied by the development of appropriate waste and by-product management strategies. Anaerobic digestion is a promising approach to recycle these wastes and reintegrate them into the economic production cycle of biogas and biofertilizer. In order to improve the performance of the anaerobic mesophilic digestion of abundant agro-industrial wastes constituted by potato peel (PP), and poultry waste (PW) and study the contribution of bovine bone meal (BB) as additive rich in phosphorus, which can help to neutralize the acidity of the substrate. The 10-point simplex-centroid design and the isoresponse surfaces strategy were used. This study demonstrated that in mesophilic bio-digestion, the using bovine bones in admixture with agroindustrial residue provided for the proper balance of chemical components required for proliferation of microbiological agent of bioconversion, which also resulted in an increase in biogas production capacity. The best formula was so composed by 66.67% bovine bone, 16.67% potatoes peel, and 16.67% poultry waste. The stability was achieved here after only 12 days. The digestate generated from it was fulfilled with the microbiological and chemical requirements for safety defined by the NF U44-551 standard. Germination test revealed that this optimal produced digestate, did not hinder growth, in fact, almost 85% of seed was germinated. Finally, fertilization experiments prove that this digestate can boost the growth of bell pepper (Capsicum annuum).  相似文献   

19.
The environmental problem caused by the effluents from the four main agrifood industries in Extremadura (W Spain) is evaluated in the present work. In particular, attention is paid to the management of wastes from slaughterhouse operations. Pollution is quantified in terms of equivalent population and biological oxygen demand, for which very high values are reported.Efforts are also focused on the search of viable technical solutions for the treatment of those residues and their energetic valuation. In this sense, anaerobic digestion techniques are proposed, not only because they lead to a drastic decrease in their pollution potential, but also because significant volumes of biogas are obtained. This biogas might be used to produce electricity to be transferred to the electrical network. This way, anaerobic digestion plants would allow depreciation within a relatively short period.In particular, an analysis of the economics of a plant for the codigestion of solid and liquid effluents from meat industry is carried out, and a payback time between 7 and 8 years was achieved.  相似文献   

20.
A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号