首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水文连通性对湖泊水资源调节、水质净化和生态安全等具有重要作用,但同时也可能带来潜在风险。因而厘清水文连通性对其生态环境的影响规律,对于开展水文连通性修复工作具有重要指导意义。基于广泛的文献调研,介绍了水文连通性的定义与内涵,分别综述了水文连通性对湖泊水文水动力、水质、水生态系统影响的研究进展。在此基础上,总结归纳了水文连通性通过改变水文水动力过程影响生态系统的路径:一是直接改变生境面积、植被格局和生物迁移繁殖特征,二是通过改变水质和沉积物特征而作用于生物的生长发育及其体内污染物累积转化过程。最后,对水文连通性变化的生态环境效应研究进行了展望:(1)加强对垂向连通性的研究以及拓展不同维度连通性耦合转化研究;(2)借助水动力-水质-水生态耦合模型研究水文连通性变化下的生态环境效应;(3)开展水文连通性的生态环境风险研究,并基于生态环境效益和社会经济效益权衡确定适宜的水文连通性。  相似文献   

2.
基于气候变化下部分珍稀濒危物种脆弱性分析,初步提出了适应对策,探讨了部分物种适应措施。气候变化下,珍稀濒危物种脆弱性表现在物种分布范围减少、破碎化和失去原分布范围、丰富度下降、种群数量减少、物种灭绝、栖息地退化或消失等。珍稀濒危物种适应气候变化需要分析物种自然适应机制,加强就地保护,增加种群数量,开展迁地和遗传保护,减少其它干扰,保护和恢复栖息地,建立自然保护区适应对策等。每个物种需要分析目前濒危程度和气候变化下的脆弱性来提出适应对策。  相似文献   

3.
江汉湖沼资源的开发与保护   总被引:1,自引:0,他引:1  
湖沼是重要的自然资源,是开发水体生态农业与发展轻化工业原材料的生产基地。保护湖沼资源不但能调控环境,且可成为天然水生或沼生生物的基因库。对江汉湖沼资源的保护与合理开发利用,既能收到巨大的经济效益,又可保护湖沼生态环境和发挥其生态经济效益。  相似文献   

4.
Effects of acidification on aquatic ecosystems are analyzed on the basis of an analytical synopsis of relevant data. Major active agents influencing aquatic organisms and main trends in the reorganization of microbial, phyto- and zooplanktonic, benthic, and fish communities in an acidified environment are described. A generalized concept of changes in ecosystems caused by acid precipitation and accompanying factors is formulated. These changes include the reduction of biodiversity of all structural elements due to the disappearance of species sensitive to acidification, modification of trophic structure, and decrease of fish stock.Translated from Ekologiya, No. 2, 2005, pp. 110–119.Original Russian Text Copyright © 2005 by Moiseenko.  相似文献   

5.
We provide a global assessment, with detailed multi-scale data, of the ecological and toxicological effects generated by inorganic nitrogen pollution in aquatic ecosystems. Our synthesis of the published scientific literature shows three major environmental problems: (1) it can increase the concentration of hydrogen ions in freshwater ecosystems without much acid-neutralizing capacity, resulting in acidification of those systems; (2) it can stimulate or enhance the development, maintenance and proliferation of primary producers, resulting in eutrophication of aquatic ecosystems; (3) it can reach toxic levels that impair the ability of aquatic animals to survive, grow and reproduce. Inorganic nitrogen pollution of ground and surface waters can also induce adverse effects on human health and economy. Because reductions in SO2 emissions have reduced the atmospheric deposition of H2SO4 across large portions of North America and Europe, while emissions of NOx have gone unchecked, HNO3 is now playing an increasing role in the acidification of freshwater ecosystems. This acidification process has caused several adverse effects on primary and secondary producers, with significant biotic impoverishments, particularly concerning invertebrates and fishes, in many atmospherically acidified lakes and streams. The cultural eutrophication of freshwater, estuarine, and coastal marine ecosystems can cause ecological and toxicological effects that are either directly or indirectly related to the proliferation of primary producers. Extensive kills of both invertebrates and fishes are probably the most dramatic manifestation of hypoxia (or anoxia) in eutrophic and hypereutrophic aquatic ecosystems with low water turnover rates. The decline in dissolved oxygen concentrations can also promote the formation of reduced compounds, such as hydrogen sulphide, resulting in higher adverse (toxic) effects on aquatic animals. Additionally, the occurrence of toxic algae can significantly contribute to the extensive kills of aquatic animals. Cyanobacteria, dinoflagellates and diatoms appear to be major responsible that may be stimulated by inorganic nitrogen pollution. Among the different inorganic nitrogenous compounds (NH4+, NH3, NO2-, HNO2NO3-) that aquatic animals can take up directly from the ambient water, unionized ammonia is the most toxic, while ammonium and nitrate ions are the least toxic. In general, seawater animals seem to be more tolerant to the toxicity of inorganic nitrogenous compounds than freshwater animals, probably because of the ameliorating effect of water salinity (sodium, chloride, calcium and other ions) on the tolerance of aquatic animals. Ingested nitrites and nitrates from polluted drinking waters can induce methemoglobinemia in humans, particularly in young infants, by blocking the oxygen-carrying capacity of hemoglobin. Ingested nitrites and nitrates also have a potential role in developing cancers of the digestive tract through their contribution to the formation of nitrosamines. In addition, some scientific evidences suggest that ingested nitrites and nitrates might result in mutagenicity, teratogenicity and birth defects, contribute to the risks of non-Hodgkin's lymphoma and bladder and ovarian cancers, play a role in the etiology of insulin-dependent diabetes mellitus and in the development of thyroid hypertrophy, or cause spontaneous abortions and respiratory tract infections. Indirect health hazards can occur as a consequence of algal toxins, causing nausea, vomiting, diarrhoea, pneumonia, gastroenteritis, hepatoenteritis, muscular cramps, and several poisoning syndromes (paralytic shellfish poisoning, neurotoxic shellfish poisoning, amnesic shellfish poisoning). Other indirect health hazards can also come from the potential relationship between inorganic nitrogen pollution and human infectious diseases (malaria, cholera). Human sickness and death, extensive kills of aquatic animals, and other negative effects, can have elevated costs on human economy, with the recreation and tourism industry suffering the most important economic impacts, at least locally. It is concluded that levels of total nitrogen lower than 0.5-1.0 mg TN/L could prevent aquatic ecosystems (excluding those ecosystems with naturally high N levels) from developing acidification and eutrophication, at least by inorganic nitrogen pollution. Those relatively low TN levels could also protect aquatic animals against the toxicity of inorganic nitrogenous compounds since, in the absence of eutrophication, surface waters usually present relatively high concentrations of dissolved oxygen, most inorganic reactive nitrogen being in the form of nitrate. Additionally, human health and economy would be safer from the adverse effects of inorganic nitrogen pollution.  相似文献   

6.
中华鲟濒危状况与物种保护对策的评估分析   总被引:1,自引:0,他引:1  
濒危等级是确定物种优先保护顺序和制订濒危物种保育策略的重要依据。结合历史资料以及近年的监测数据,对长江中华鲟种群繁殖群体及补充群体数量与质量,关键栖息地胁迫因素及胁迫强度等的全面梳理,总结出了1981年以来中华鲟种群及环境胁迫的变动趋势。参照IUCN物种濒危程度的划分准则建立了中华鲟物种濒危等级的划分标准;同时按照10年一组对该物种不同年代下的濒危状况进行评估。中华鲟在1983~1992年代进入濒危程度;在2003~2012年代进入极危程度。中华鲟物种的濒危等级取决于自身种群质量以及人类活动及环境结构变化等多方面的综合影响。人类活动和环境结构变化对中华鲟的胁迫呈现多样性与复杂性,且整体呈现一定的时间和空间尺度上的差异。最后,基于物种的濒危状况以及胁迫因素,分析了不同年代内的对策及效果,在此基础上提出了物种保护工作的构架和保护行动的优先顺序。  相似文献   

7.
赣江是长江中下游的重要支流,赣江流域的水生态安全直接关系到长江经济带建设的可持续与绿色发展。然而,近些年来,人类活动干扰对赣江流域水生态的影响还在持续增加。该文综述了截止2017年12月赣江流域的水环境、鱼类资源及人类活动干扰影响的相关文献。目前,赣江流域水环境处于中度污染级别,有机污染物增加,无机污染物无显著变化。鱼类共有124种,隶属10目32科。经统计近10年的鱼类资源,赣江流域鱼类有7目35科120种,其中上游鱼类4目14科22种,中游鱼类6目28科82种,下游鱼类7目28科91种。全流域10年中未发现的鱼类包括中华鲟、鲥鱼、刀鲚、弓斑东方鲀、斑条鱊、短须鱊、拟尖头红鲌、似鱎、条纹小鲃、泉水鱼等33种。该文分析了影响赣江流域水生态的三类主要人类活动干扰:水电站建设,工农业污染和航运、采砂等,这些干扰增加了水体中营养盐和有机污染物的含量,同时破坏了水生生物生境,进而影响了鱼类的生存。随着赣江流域多个大型水电站的规划和建设,建议今后应进一步加强水电开发对水环境和鱼类资源的影响研究,同时开展生态修复,加强生境保护,严控涉水行为,完善生态补偿机制,以保证赣江流域的绿色发展。  相似文献   

8.
湖北省珍稀濒危保护水禽物种多样性及种群数量   总被引:3,自引:0,他引:3  
使用直接计数法和专项调查法于1996年5月~2003年7月对湖北省珍稀濒危保护水禽物种多样性和种群数量进行了研究。结果表明:湖北省珍稀濒危保护水禽有45种,隶属于6目9科24属;记录到34种,其中有黄嘴白鹭和小苇鳽2个新记录种。按区系型分,古北界种类占优势,有35种,东洋种8种,广布种2种;按季节型分,冬候鸟为主体,有30种,夏候鸟8种,旅鸟5种,留鸟2种;按生活型分,涉禽23种,游禽22种,种类几乎相等。种群数量为41.1796万只。在45种珍稀水禽中,IUC红皮书水禽23种,8 247只;中国红皮书水禽22种,3 615只;CITES濒危水禽23种,40.631 6万只;国家重点保护水禽24种,3 838只。角等11种水禽未发现,可能已绝迹或极度濒危。按水禽1 %地理种群数量的标准,洪湖、沉湖、龙感湖、梁子湖、网湖等湿地可以确定为国际重要湿地。  相似文献   

9.
The use of pesticides for crop protection may result in the presence of toxic residues in environmental matrices. In the aquatic environment, pesticides might freely dissolve in the water or bind to suspended matter and to the sediments, and might be transferred to the organisms' tissues during bioaccumulation processes, resulting in adverse consequences to non-target species. One such group of synthetic organic pesticides widely used worldwide to combat pathogenic fungi affecting plants is the strobilurin chemical group. Whereas they are designed to control fungal pathogens, their general modes of action are not specific to fungi. Consequently, they can be potentially toxic to a wide range of non-target organisms. The present work had the intent to conduct an extensive literature review to find relevant research on the occurrence, fate and effects of azoxystrobin, the first patent of the strobilurin compounds, in aquatic ecosystems in order to identify strengths and gaps in the scientific database. Analytical procedures and existing legislation and regulations were also assessed. Data gathered in the present review revealed that analytical reference standards for the most relevant environmental metabolites of azoxystrobin are needed. Validated confirmatory methods for complex matrices, like sediment and aquatic organisms' tissues, are very limited. Important knowledge of base-line values of azoxystrobin and its metabolites in natural tropical and estuarine/marine ecosystems is lacking. Moreover, some environmental concentrations of azoxystrobin found in the present review are above the Regulatory Acceptable Concentration (RAC) in what concerns risk to aquatic invertebrates and the No Observed Ecologically Adverse Effect Concentration (NOEAEC) reported for freshwater communities. The present review also showed that there are very few data on azoxystrobin toxicity to different aquatic organisms, especially in what concerns estuarine/marine organisms. Besides, toxicity studies mostly address azoxystrobin and usually neglect the more relevant environmental metabolites. Further work is also required in what concerns effects of exposure to multi-stressors, e.g. pesticide mixtures. Even though Log Kow for azoxystrobin and R234886, the main metabolite of azoxystrobin in water, are below 3, the bio-concentration factor and the bioaccumulation potential for azoxystrobin are absent in the literature. Moreover, no single study on bioaccumulation and biomagnification processes was found in the present review.  相似文献   

10.
鄱阳湖克氏原螯虾的分布现状及其群体外部形态聚类分析   总被引:2,自引:0,他引:2  
克氏原螯虾(Procambarus clarkii)作为外来入侵物种,对淡水水生生物的多样性已构成严重威胁为国内外学者所共识。有鉴于此,本项目通过对环鄱阳湖湖盆地域9县(市)计12个调查点进行样本采集,并对其多个形态学指标进行测量和数据聚类分析,以探讨克氏原螯虾在该地域的地理分布现状。研究结果表明,克氏原螯虾在鄱阳湖湖盆地域已占据一定的生态地位,并呈现全湖广泛分布及泛滥孳生趋势,已形成对其他水生生物多样性和生态系统稳定的潜在威胁;聚类分析结果显示,鄱阳湖克氏原螯虾群体外部形态上分为两个类群,即星子县、永修县、共青城市群体为一类,鄱阳县、新建县、余干县群体聚成一类,两类群似不存在地域上的交叉,但尚不能说明这两类群为完全不同的群体。同时,提出了防控克氏原螯虾的可行性建议  相似文献   

11.
Specific structural features of the zooplankton community of Lake Imandra have been analyzed in areas polluted with wastewaters from the copper-nickel industry (Monche Bay) and apatite-nepheline industry (Belaya Bay) or heated waters from the Kola Nuclear Power Plant (Molochnaya Bay) and in a conditionally clean (background) area (the eastern and western parts of Babinskaya Imandra pool). The current ecological state of these communities has been assessed. The results contribute to knowledge about the responses of hydrobionts to pollution with different kinds of industrial wastewaters and the potential of using the zooplankton community as a reliable indicator for evaluating the state of aquatic ecosystems.  相似文献   

12.
The Mediterranean region of Chile is considered a biodiversity hot spot. An increase in temperature and decrease in precipitation, as projected for the end of this century by global circulation models, would likely change the distribution of the sclerophyllous thorny shrubland and woodland. In order to assess those potential impacts, the MAXENT algorithm was used to project potential changes in the distribution of the Mediterranean ecosystem. Ecological niche models were fitted and used to project the potential distribution of these forest ecosystems by the end of the century. Projections were made using data from the PRECIS model for the A2 and B2 climate change scenarios and two strategies of occupancy: free migration and non-migration. Distribution models of sclerophyllous, woodland and shrubland performed accurately representing current species’ distribution. When we assume non-migration responses under climate change scenarios, results reveal a decrease in the distribution area for all the species. The areas where the highest reduction in a suitable environment was found are located along the coastline, where higher temperature increases have been projected. For native ecosystems from the Andean Range region, such as communities dominated by thorny species, a stable habitat was found, associated with a higher adaptation capability to future climatic projections. Hence, in the future, buffer zones originated by “topo-climatic” conditions might play a key role in protecting Central Chile biodiversity.  相似文献   

13.
The use of geothermal energy for electrical generation and a variety of other purposes requires the handling and disposal of large volumes of geothermal fluids. These fluids contain constituents such as dissolved ammonia, hydrogen sulfide gas, and trace elements. Facilities in the United States are not expected to routinely discharge large volumes of toxic geothermal fluids. However, chronic effects on aquatic ecosystems are possible at concentrations where acute toxicity would be neither expected nor observed. Also, some trace elements may accumulate to hazardous levels in ecosystems, even when released at nontoxic concentrations.  相似文献   

14.
Climate change generally requires species to migrate northward or to higher elevation to maintain constant climate conditions, but migration requirement and migration capacity of individual species can vary greatly. Individual populations of species occupy different positions in the landscape that determine their required range shift to maintain similar climate, and likewise the migration capacity depends on habitat connectivity. Here, we demonstrate an approach to quantifying species vulnerabilities to climate change for 419 rare vascular plants in Alberta, Canada, based on a multivariate velocity of climate change metric, local habitat fragmentation, and migration capacity. Climate change velocities indicated that future migration requirements ranged from 1 to 5 km/year in topographically complex landscapes, such as the Alberta Foothills and Rocky Mountains. In contrast, migration requirements to maintain constant climate in relatively flat Boreal Plains, Parkland, and Grassland ranged from 4 to 8 km/year. Habitat fragmentation was also highest in these flat regions, particularly the Parkland Natural Region. Of the 419 rare vascular plants assessed, 36 were globally threatened (G1–G3 ranking). Three globally threatened species were ranked as extremely vulnerable and five species as highly vulnerable to the interactions among climate change velocity, habitat fragmentation, and migration capacity. Incorporating dispersal characteristics and habitat fragmentation with local patterns in climate change velocity improves the assessment of climate change threats to species and may be applied to guide monitoring efforts or conservation actions.  相似文献   

15.
目前,已有很多研究致力于讨论保护规划中整合保护效益和经济成本的重要性。为丰富解决该问题的思路,从系统保护规划理念出发,应用MARXAN模型软件对长江流域两栖爬行类生物多样性保护优先区进行了选择和评价。研究中共选择两栖物种54个,爬行物种73个作为指示物种,并按濒危性和特有性划分为5个类型。综合考虑每个类型的特定保护目标,以县域人均GDP为相对保护成本,探讨如何选择达到保护目标的最低经济成本区域。通过运算每个规划单元的不可替代性,共选定保护优先区9个,包括121个县(市、民族自治县)。建议以9个保护热点区为基础,率先建立各区域内保护网络,同时在已建保护区日常巡护中加入两栖爬行动物巡护内容。  相似文献   

16.
17.
Habitat loss and degradation are main global threats to biodiversity, and land-use changes in agriculture-dominated landscapes are crucial for an important portion of biodiversity, especially in Europe. We evaluated the effects of land-use changes (1954–2012) on a threatened species, the ortolan bunting, in an agricultural area crucial for its conservation in Italy. We built a distribution model for ortolan bunting in current landscapes and then re-projected it to past scenarios (1954 and 1999–2000). We evaluated the most important land-use changes occurred and estimated their effects on habitat suitability. Bunting occurrence was mostly affected by the extent of grassland (positively; used as foraging/breeding ground), shrubland (quadratic effect; perches/shelter), forest and urbanized land (negatively), and by solar radiation (positively) and slope (quadratic), consistent with other studies carried out especially in southern Europe. The potential distribution of the species was much larger in the past: the estimated decline in suitable habitat is 44–72 % (since 1999–2000/1954), coherent with historical data suggesting strong decline and contraction. Changes in suitability (1954–2012) were mostly associated with changes in the cover of forest, vineyards and abandoned areas (negatively), and shrubland (positively). Land-use/land-cover changes are the main drivers of species occurrence and of habitat decline. The heterogeneous landscape of hilly/low-mountain sites in this area, characterized by a mix of habitats offering complementary resources to ortolan buntings and other species of conservation concern, is currently threatened by abandonment and intensification, but its maintenance may be promoted by a correct definition of Rural Development Programme measures.  相似文献   

18.
Despite the importance of neotropical cloud forests as providers of ecosystem services to society, they are one of the most threatened ecosystems in the world. We analysed the importance of three cloud forest reserves in central Colombia as providers of ecosystem services, as well as the social support to conservation actions in these ecosystems through willingness to pay (WTP) and willingness to give up time (WTT) estimates. Our results highlight the high commitment of all users of the cloud forest areas towards the conservation of the ecosystem services provided by these strategic ecosystems. We found that the most important perceived ecosystem services were water supply and habitat maintenance for species. Our findings also suggest that the respondents’ ecological knowledge (measured as the awareness of the ecosystem services supplied by cloud forests) was an important factor in determining both WTP and WTT for conserving cloud forests. Moreover, our results indicate that WTT should be a viable technique to explore individual preferences of different stakeholders towards conservation activities in cloud forests. Based on our results, we propose a conservation strategy of cloud forests that considers different users’ socio-economic and environmental characteristics, in which both experimental and experiential knowledge should be incorporated in order to promote collective action.  相似文献   

19.
Environmental change is likely to have a strong impact on biodiversity, and many species may shift their distribution in response. In this study, we aimed at projecting the availability of suitable habitat for an endangered amphibian species, the Fire-bellied toad Bombina bombina, in Brandenburg (north-eastern Germany). We modelled a potential habitat distribution map based on (1) a database with 10,581 presence records for Bombina from the years 1990 to 2009, (2) current estimates for ecogeographical variables (EGVs) and (3) the future projection of these EGVs according to the statistical regional model, respectively, the soil and water integrated model, applying the maximum entropy approach (Maxent). By comparing current and potential future distributions, we evaluated the projected change in distribution of suitable habitats and identified the environmental variables most associated with habitat suitability that turned out to be climatic variables related to the hydrological cycle. Under the applied scenario, our results indicate increasing habitat suitability in many areas and an extended range of suitable habitats. However, even if the environmental conditions in Brandenburg may change as predicted, it is questionable whether the Fire-bellied toad will truly benefit, as dispersal abilities of amphibian species are limited and strongly influenced by anthropogenic disturbances, that is, intensive agriculture, habitat destruction and fragmentation. Furthermore, agronomic pressure is likely to increase on productive areas with fertile soils and high water retention capacities, indeed those areas suitable for B. bombina. All these changes may affect temporary pond hydrology as well as the reproductive success and breeding phenology of toads.  相似文献   

20.
Indian pangolin (Manis crassicaudata) is a fossorial, “Near threatened” mammalian species occurring in Pakistan and facing a risk of endangerment in its wild habitat. Being nocturnal, ecological data of the species is lacking in the country and in south Asia as well. The current study investigated some ecological parameters of the species like, distribution, habitat analysis, population and food habits in district Chakwal of Potohar Plateau. Illegal trapping and killing by professional nomads for its scales is the main threat to the species in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号