首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   1篇
安全科学   2篇
废物处理   5篇
环保管理   11篇
综合类   6篇
基础理论   8篇
污染及防治   23篇
评价与监测   7篇
社会与环境   3篇
  2023年   5篇
  2022年   14篇
  2021年   8篇
  2020年   2篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
11.
Harmful algal blooms (HABs) diminish the utility of reservoirs for drinking water supply, irrigation, recreation, and ecosystem service provision. HABs decrease water quality and are a significant health concern in surface water bodies. Near real-time monitoring of HABs in reservoirs and small water bodies is essential to understand the dynamics of turbidity and HAB formation. This study uses satellite imagery to remotely sense chlorophyll-a concentrations (chl-a), phycocyanin concentrations, and turbidity in two reservoirs, the Grand Lake O′ the Cherokees and Hudson Reservoir, OK, USA, to develop a tool for near real-time monitoring of HABs. Landsat-8 and Sentinel-2 imagery from 2013 to 2017 and from 2015 to 2020 were used to train and test three different models that include multiple regression, support vector regression (SVR), and random forest regression (RFR). Performance was assessed by comparing the three models to estimate chl-a, phycocyanin, and turbidity. The results showed that RFR achieved the best performance, with R2 values of 0.75, 0.82, and 0.79 for chl-a, turbidity, and phycocyanin, while multiple regression had R2 values of 0.29, 0.51, and 0.46 and SVR had R2 values of 0.58, 0.62, and 0.61 on the testing datasets, respectively. This paper examines the potential of the developed open-source satellite remote sensing tool for monitoring reservoirs in Oklahoma to assess spatial and temporal variations in surface water quality.  相似文献   
12.

The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of the most important biorefinery platforms. Furthermore, microalgae's ability to alter their metabolism in response to environmental stresses to produce relatively high levels of high-value compounds makes them a promising alternative to fossil fuels. As a result, microalgae can significantly contribute to long-term solutions to critical global issues such as the energy crisis and climate change. The environmental benefits of algal biofuel have been demonstrated by significant reductions in carbon dioxide, nitrogen oxide, and sulfur oxide emissions. Microalgae-derived biomass has the potential to generate a wide range of commercially important high-value compounds, novel materials, and feedstock for a variety of industries, including cosmetics, food, and feed. This review evaluates the potential of using microalgal biomass to produce a variety of bioenergy carriers, including biodiesel from stored lipids, alcohols from reserved carbohydrate fermentation, and hydrogen, syngas, methane, biochar and bio-oils via anaerobic digestion, pyrolysis, and gasification. Furthermore, the potential use of microalgal biomass in carbon sequestration routes as an atmospheric carbon removal approach is being evaluated. The cost of algal biofuel production is primarily determined by culturing (77%), harvesting (12%), and lipid extraction (7.9%). As a result, the choice of microalgal species and cultivation mode (autotrophic, heterotrophic, and mixotrophic) are important factors in controlling biomass and bioenergy production, as well as fuel properties. The simultaneous production of microalgal biomass in agricultural, municipal, or industrial wastewater is a low-cost option that could significantly reduce economic and environmental costs while also providing a valuable remediation service. Microalgae have also been proposed as a viable candidate for carbon dioxide capture from the atmosphere or an industrial point source. Microalgae can sequester 1.3 kg of carbon dioxide to produce 1 kg of biomass. Using potent microalgal strains in efficient design bioreactors for carbon dioxide sequestration is thus a challenge. Microalgae can theoretically use up to 9% of light energy to capture and convert 513 tons of carbon dioxide into 280 tons of dry biomass per hectare per year in open and closed cultures. Using an integrated microalgal bio-refinery to recover high-value-added products could reduce waste and create efficient biomass processing into bioenergy. To design an efficient atmospheric carbon removal system, algal biomass cultivation should be coupled with thermochemical technologies, such as pyrolysis.

  相似文献   
13.
Environmental Science and Pollution Research - The 2019 outbreak of corona virus disease began from Wuhan (China), transforming into a leading pandemic, posing an immense threat to the global...  相似文献   
14.

We performed a systematic and meta-analysis study to find the association between cadmium (Cd) exposure and blood pressure (BP)/hypertension (HTN) in exposed general populations. We searched main databases for literature published between year 2000 and April 15, 2021. Quality assessment was performed with the Joanna Briggs Institute (JBI) critical appraisal tools. Heterogeneity between studies was determined by I-squared (I2) statistic. The random effects model was used to determine the association between blood and urine Cd levels with hypertension. The overall standard differences in mean for Cd level in hypertensive and control groups were 3.34, 1.79, and 8.09 based on samples from blood, urine, and hair, respectively. The overall standard differences in mean for Cd level in the low and high exposure groups were???0.795 and???1.036 based on blood and urinary samples, respectively. Our findings indicate a positive relationship between blood and hair Cd levels and hypertension. We also found that hair is the optimal biological sample to find the relationship between Cd exposure and hypertension for both genders. However, more studies are needed to confirm these findings.

  相似文献   
15.
Environmental Science and Pollution Research - Neurodegeneration is the loss of neuronal capacity and structure over time which causes neurodegenerative disorders like Alzheimer, amyotrophic...  相似文献   
16.
The aim of present study was to investigate the quality of the produced effluent from different units of the Iran Central Iron Ore in Bafq city and comparison of effluent with the standards. This study presents the physicochemical and biological parameters data of effluent of three Sequencing batch reactors (SBR) with a capacity of 160 m3?d?1. Most common parameters include pH, total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), biochemical oxygen demand (BOD5), chemical oxygen demand (COD), heavy metals, and total coliforms and fecal coliforms as biological indicators. Then, for each SBR system, the average of each parameter was determined, and results were compared with the standard recommended by the Iranian Environmental Protection Agency. Based on the results, some of the parameters, including BOD5, COD, and TSS in the wastewater treatment plant (WWTP) effluent, are higher than the permitted amount for discharge to the surface water. Considering the BOD5, COD, and TSS concentration in WWTPs, the treated wastewater is only suitable for agricultural and irrigation use. Therefore, wastewater produced by Iran Central Iron Ore Co. will need additional treatment to achieve standard quality of water before discharge in surface water and adsorbent well.  相似文献   
17.
The present study aimed to evaluate the performance of a bipolar electrolysis/electrocoagulation reactor designed to enhance the sludge dewaterability. The reactor was 15 L in volume, with two series of plates used in it; Ti/RuO2 plates for the electrolysis of the sludge, and also aluminum and iron plates for electrocoagulation process. The dewaterability of the sludge was determined in terms of its capillary suction time (CST) and specific resistance to filtration (SRF), while the degree of sludge disintegration was determined based on the value of degree of sludge disintegration (DDSCOD). The maximum reduction in CST and SRF was observed at a detention time of 20 min and a voltage of 30 V. However, increasing of both detention time and voltage significantly increased the values of CST and SRF even to an extent that they both exceeded those of the untreated sludge. The optimal degree of sludge disintegration achieved by the present study was 2.5%, which was also achieved at a detention time of 20 min and a voltage of 30 V. As reported previously, increased DDSCOD values led to increasing CST and SRF values, due primarily to the disruption of the sludge flocs. According to the results from the present study, it can be concluded that simultaneous application of electrocoagulation and electrolysis is effective in enhancing the sludge dewaterability, because electrocoagulation helps to achieve a higher degree of sludge disintegration while maintaining the desired sludge dewaterability.  相似文献   
18.
This paper studies the partitioning and bioaccumulation of ten target metals (53Cr, Mn, Co, 60Ni, 65Cu, 66Zn, As, 88Sr, 95Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements.Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, 60Ni, 65Cu, 88Sr, 95Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes.  相似文献   
19.
20.
Urban transportation projects are essential in increasing the efficiency of moving people and goods within a city, and between cities. Environmental impacts from such projects must be evaluated and mitigated, as applicable. Spatial modeling is a valuable tool for quantifying the potential level of environmental consequences within the context of an environmental impact assessment (EIA) study. This paper presents a GIS-based tool for the assessment of airborne-noise and ground-borne vibration from public transit systems, and its application to an actual project. The tool is based on the US Federal Transit Administration's (FTA) approach, and incorporates spatial information, satellite imaging, geostatistical modeling, and software programming. The tool is applied on a case study of initial environmental evaluation of a light rail transit project in an urban city in the Middle East, to evaluate alternative layouts. The tool readily allowed the alternative evaluation and the results were used as input to a multi-criteria analytic framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号