首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1254篇
  免费   132篇
  国内免费   27篇
安全科学   1048篇
废物处理   32篇
环保管理   41篇
综合类   198篇
基础理论   19篇
污染及防治   27篇
评价与监测   20篇
社会与环境   7篇
灾害及防治   21篇
  2023年   47篇
  2022年   29篇
  2021年   106篇
  2020年   102篇
  2019年   61篇
  2018年   24篇
  2017年   41篇
  2016年   54篇
  2015年   87篇
  2014年   66篇
  2013年   61篇
  2012年   78篇
  2011年   79篇
  2010年   49篇
  2009年   61篇
  2008年   49篇
  2007年   95篇
  2006年   65篇
  2005年   39篇
  2004年   32篇
  2003年   30篇
  2002年   31篇
  2001年   33篇
  2000年   16篇
  1999年   16篇
  1998年   17篇
  1997年   5篇
  1996年   9篇
  1995年   8篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
排序方式: 共有1413条查询结果,搜索用时 907 毫秒
41.
Reaction thermal runaway is one of the most important reasons leading to chemical accidents. With the rapid development of the chemical industry in the world, especially the fine chemical industry, various safety accidents also occur frequently. Therefore, it is necessary to study the exothermic behavior of the reaction process. In this study, reaction calorimeter was used to study the exothermic phenomena during the chlorination reaction and amination reaction. Differential scanning calorimetry was performed on the reactants, and thermogravimetric experiments were performed on the products. In addition, adiabatic experiment was performed to study the thermal runaway behavior of amination products under adiabatic conditions. The results showed that the target reactions generated a large amount of heat in the initial stage. The maximum temperature of amination reaction is higher than the initial decomposition temperature of the amination product under adiabatic condition. The pyrolysis of amination product was divided into three stages. The product had a high apparent activation energy at the beginning of decomposition, and the apparent activation energy decreased as the decomposition progressed.  相似文献   
42.
Thermal runaway hazard assessment provides the basis for comparing the hazard levels of different chemical processes. To make an overall evaluation, hazard of materials and reactions should be considered. However, most existing methods didn't take the both into account simultaneously, which may lead the assessment to a deviation from the actual hazard. Therefore, an integrated approach called Inherent Thermal-runaway Hazard Index (ITHI) was developed in this paper. Similar to Dow Fire and Explosion Index(F&EI) function, thermal runaway hazard of chemical process in ITHI was the product of material factor (MF) and risk index (RI) of reaction. MF was an indicator of material thermal hazards, which can be determined by initial reaction temperature and maximum power density. RI, which was the product of probability and severity, indicated the risk of thermal runaway during the reaction stage. Time to maximum rate under adiabatic conditions and criticality classes of scenario were used to indicate the runaway probability of the chemical process. Adiabatic temperature rise and heat of the desired reaction and secondary reaction were used to determine the severity of runaway reaction. Finally, predefined hazard classification criteria was used to classify and interpret the results obtained by this method. Moreover, the method was validated by case studies.  相似文献   
43.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   
44.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   
45.
杨春丽 《安全》2020,(2):48-54
N2和CO2是常用的惰性抑爆气体,为研究两种气体的抑爆特性,采用20L球形爆炸试验装置,分析了不同浓度配比条件下N2/CH4/空气以及CO2/CH4/空气混合气体的爆炸压力,同时采集爆炸后的气体样品,对比分析爆炸后残留气体的主要成分。结果显示:随CH4浓度从5%增加至12.5%时,完全抑制CH4爆炸需要的惰性气体最小量先增大后降低,CH4浓度在6.5%~7.5%之间时,抑爆需要的惰性气体的量最大;在同一CH4浓度条件下,抑爆需要N2的量大于CO2,并且CH4浓度在5%~6.5%时,抑爆需要两种惰性气体的量值差别最大;当CH4浓度一定时,随着加入惰性气体量的增大,爆炸最大超压逐渐降低,惰性气体浓度和爆炸超压之间基本呈线性关系;在同样条件下,相对于N2,CO2为抑爆气体时,爆炸后腔体内残留的CH4浓度较高。研究成果为惰性气体抑爆技术提供技术支撑,同时为揭示惰性气体抑爆机理有一定作用。  相似文献   
46.
汪俊岭  王鑫  宋磊  胡源 《火灾科学》2019,28(4):211-221
棉花是纺织业的重要原料,是人民群众生活不可或缺的必需品,同时也是我国进出口重要的商品。研究如何安全有效地进行棉花的储备具有十分重要的现实意义。棉纤维本身含有脂肪、蜡质和果胶等适合微生物生长繁殖的营养物质。在棉花储备中,高的回潮率会加速微生物的繁殖,进而产生热量。热量的累积会引起温度升高以及棉花霉变,不利于棉花的安全有效储存。因此,通过静电吸附法将安全无毒的有机锌络合物附着在棉纤维表面,研究表明,相同条件下,处理棉的霉变状况明显得到抑制。加速发霉条件下,未处理棉的相对于白纸的平均色差值为28.10,而双乙酸锌以及苯甲酸锌防霉处理棉的色差值分别为5.16和5.86,下降了81.6%和79.1%。自然发霉条件下,双乙酸锌以及苯甲酸锌防霉处理棉的色差值分别下降了53.8%和50.7%。同时研究了纯棉以及处理棉氮气下的热分解动力学,相比于未处理棉,双乙酸锌防霉处理后活化能下降了15.8%,而苯甲酸锌防霉处理后活化能下降了10.9%。此外,利用实时红外和热重红外联用技术得到了样品在热解过程中固相以及气相的裂解产物的红外谱图,发现防霉处理能一定程度上抑制棉花热解。  相似文献   
47.
氢能具有储运便捷、来源多样、洁净环保等突出优点,许多国家把发展氢能作为重要的能源战略。氢安全是氢能大规模商业化应用的重要保障。在分析国内外氢安全领域近年来最新研究进展的基础上,依次从氢泄漏与扩散、氢燃烧与爆炸、氢与金属材料相容性及氢风险评价等方面,系统总结了国内外氢安全研究面临的挑战,并对我国氢安全的发展提出了建议。  相似文献   
48.
There is a noticeable discrepancy in the ability to control reduced explosion overpressure between flat bursting panels and curved bursting panels with the same static activation overpressure. Flat bursting plates were observed to leak at approximately 80% of the static activation overpressure lower than curved bursting plates. A new experimental technique is proposed in our paper. Three different vent areas of flat and curved bursting panels were tested, there was significant difference in structural stiffness between flat bursting panels and curved bursting panels, which is the reason the discrepancy in the ability to control reduced explosion overpressure. The structural stiffness of the flat bursting panels is poorer than that of the other, and a greater deformation of the flat bursting panels occurs under the same load. The membrane stress caused by the explosion overpressure therefore produces a larger value in the flat bursting panels which causes it to open prematurely. Moreover, the smaller the vent area that is, the more significant discrepancy in controlling the reduced explosion overpressure between both bursting panels is. This experimental and theoretical result in our paper provides some useful experience for the method of explosion venting.  相似文献   
49.
Azo compounds are widely involved in the industrial processes of dyes, pigments, initiators, and blowing agents. Unfortunately, these compounds have a bivalent unstable –NN– composition, which can be readily broken when the ambient temperature is elevated. Self-accelerating decomposition might cause a runaway reaction and lead to a fire, explosion, or leakage when the cooling system fails or other events occur. This study investigated the explosion properties, thermal stability parameters, and thermal hazard and mechanism of 2,2′–azobisisobutyronitrile (AIBN) and 2,2′–azobis–2–methylbutyronitrile (AMBN). We used a 20-L apparatus, vent sizing package 2, synchronous thermal analysis, and differential scanning calorimetry under explosive, adiabatic, and dynamic conditions to acquire the explosive curves, thermal curves, and thermodynamic parameters of the substances. Moreover, the differential isoconversional method (Friedman method) and ASTM E698 equation were employed to obtain the apparent activation energy Ea. All the experimental results revealed that AIBN is more dangerous than AMBN. The Ea of AIBN was lower than that of AMBN. The results can be used to construct an azo compound thermal hazard database for use for searches and reference examples by industry and related research areas.  相似文献   
50.
A model of multiple domino scenarios and the risk of the domino effect, which is a sequential chain escalating from the primary unit to the last unit, is presented in this paper. The trajectories of fragments from all units, the ground distribution of projectiles, and the risk of the sequential chain of the domino effect were calculated using Monte Carlo simulations. The results showed that the range affected by the fragments from each tank included the other tanks, meaning that fragments from one tank could hit the other tanks and cause multiple accidents, and that the sequential chain of the domino effect could indeed happen. The distributions of ground impacts showed that tank fragments were projected over long distances, up to 1200 m from the source. The spatial distribution of the kinetic energy at ground impact for tank fragments was also obtained. Moreover, the magnitudes of the probabilities of the primary, secondary, third, and fourth accidents in the domino chain were respectively about 10−7, 10−11, 10−15, and 10−19. These results showed that for neighboring domino effect units in the same accident chain, the risk of the most recent domino effect was 104 times that of the following domino effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号