首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10264篇
  免费   605篇
  国内免费   1860篇
安全科学   503篇
废物处理   943篇
环保管理   881篇
综合类   7296篇
基础理论   500篇
污染及防治   2151篇
评价与监测   442篇
社会与环境   5篇
灾害及防治   8篇
  2024年   15篇
  2023年   80篇
  2022年   104篇
  2021年   161篇
  2020年   184篇
  2019年   208篇
  2018年   99篇
  2017年   171篇
  2016年   258篇
  2015年   401篇
  2014年   683篇
  2013年   492篇
  2012年   507篇
  2011年   598篇
  2010年   523篇
  2009年   522篇
  2008年   559篇
  2007年   625篇
  2006年   626篇
  2005年   534篇
  2004年   547篇
  2003年   612篇
  2002年   562篇
  2001年   421篇
  2000年   388篇
  1999年   374篇
  1998年   340篇
  1997年   288篇
  1996年   302篇
  1995年   282篇
  1994年   283篇
  1993年   224篇
  1992年   170篇
  1991年   211篇
  1990年   176篇
  1989年   193篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
电催化反硝化是处理硝酸盐废水技术之一。本文综述了电催化反硝化的最新研究进展,分析了电催化反硝化直接电子转移和原子氢(H*)介导间接还原两种反应机理,总结了电催化反硝化的决速步是将NO3-还原为NO2-以及决定产物选择性的关键中间体是NO。在此基础上,总结了元素掺杂方法及其对电极材料催化活性中心和电催化反硝化反应路径的调控效应,提出了元素掺杂是提高电极材料催化活性、产物选择性和长期稳定性的有效手段。此外,还讨论了其他因素如水质特征、运行参数等对电催化反硝化效果的影响,明确了水中共存卤素离子如Cl-和Br-等可显著提高N2选择性以及大多数电极材料在中性条件下还原效果最佳。面向日益增长的硝酸盐废水处理需求,指出了电能消耗高和实际废水水质成分复杂导致副反应多是限制电催化反硝化大规模应用的关键瓶颈。由此,展望了电催化反硝化技术研究未来需要针对多种实际废水的理化性质开展长期中试试验,除了提高还原速率和产物选择性外,还要重点关...  相似文献   
2.
针对当前化工行业洗涤废水COD高、毒性强、表面活性剂多导致难处理难降解的问题,以青岛市某化工厂生产车间的设备清洗废水为对象,在实验室小试的基础上,设计并建立了处理规模为2.0 m~3·d~(-1)的SMADBBR组合工艺系统用于处理该洗涤废水。经过4个月的现场调试运行,研究了SMAD-BBR组合工艺对洗涤废水的处理效果。结果表明:SMAD-BBR组合工艺能够有效地降解该化工厂的清洗废水,其中COD去除率为99.1%、NH_3-N去除率为95.6%、TP去除率为82.5%;在稳定运行期间水质波动较大时,出水仍能稳定达标,表明组合工艺具有较强的抗冲击负荷能力;通过增加BBR曝气区中的MLSS,从而提高了生物量,使洗涤废水在曝气处理时泡沫严重的情况得到了有效的解决;经计算,SMAD-BBR组合工艺处理洗涤废水,每年可为该化工厂节约140×10~4元。通过分析可知,SMAD-BBR组合工艺在处理洗涤废水方面有良好的应用前景。  相似文献   
3.
采用含有二乙二醇(DEG)和乙醇胺(ETA)的双组分解交联剂降解废旧硬质聚氨酯泡沫塑料(PU硬泡),并利用降解得到的低聚物多元醇与木质素复合制备出性能增强的再生PU硬泡。通过对制备的再生PU硬泡的红外光谱、密度、吸水率、抗压强度、热稳定性、导热系数、热重曲线等进行分析测试,考察m(DEG)∶m(ETA)对再生PU硬泡性能的影响。实验结果表明:m(DEG)∶m(ETA)=1∶3时废旧PU硬泡的降解效果最好;木质素加入量为2.0%(w)时再生PU硬泡的密度低、抗压强度高、保温性能良好,达到国家标准《建筑绝热用硬质聚氨酯泡沫塑料》(GB/T 21558—2008)的品质要求。  相似文献   
4.
木质纤维素生物质是地球上最丰富的可再生碳资源,有潜力替代石油来生产清洁燃料和化工产品。当前木质素组分的高效利用很困难,木质素高值化是实现生物质全组分利用的关键。为实现生物质全组分的高值化利用,本文研究了基于“木质素优先”策略的分离机制,综述了木质纤维素还原催化分离的研究进展,探索了木质素脱除率、单酚产率和选择性及碳水化合物保留率等的影响因素,分析了生物质原料、溶剂、酸碱添加剂、催化剂和反应器对“木质素优先”策略的影响规律,提出了新型催化剂和反应器的设计思路,展望了木质素还原催化分离的研究方向。分析表明:单酚产率按照硬木→草本作物→软木顺序依次递减,醇水两相体系有利于木质素和半纤维素的提取与溶解以及纤维素结构的保留,酸的加入不仅提高木质素脱除率和单体收率还能促进半纤维素的水解,半/全流动反应器有效避免后续催化剂和碳水化合物的分离。  相似文献   
5.
分析了石化综合污水处理系统的运行情况,考察了丁苯橡胶废水的污染物组成与生物毒性对生产废水、气浮出水的影响。结果表明,在各类生产废水中,丁苯橡胶废水含盐、含N、含P且富含芳香类有机物,是导致生化处理单元受冲击、出水超标的主要原因;在生产废水、丁苯橡胶废水和气浮出水的溶解性有机物(DOM)中,亲水性有机物(HiM)的DOC占比分别为82%、60%和51%,疏水性有机物的DOC占比分别为18%、40%和49%。表征结果显示,丁苯橡胶废水与气浮出水中DOM的特征峰相似,主要污染物质同源。急性毒性分析结果表明,疏水中性有机物(HoN)的毒性最强,疏水酸性有机物(HoA)次之。建议对丁苯橡胶废水进行单独预处理,从源头上消减有毒物质的含量,减轻对后续生化单元的冲击。  相似文献   
6.
综述了几种常见的高含盐废水脱盐处理技术的发展历程、工艺原理、优缺点及目前的研究进展,分析了热分离、膜分离、电渗析、离子交换、电吸附、微生物脱盐等方法的优缺点,展望了未来废水脱盐工艺的发展方向。指出:脱盐方法将根据各类水体的水质特点更加精细化;多种脱盐技术联合应用也是今后废水脱盐的发展方向。  相似文献   
7.
利用折流式超重力床将氨废水处理的精馏和吸收过程集成在一台设备中,开发出一种设备小型化、流程紧凑的氨废水资源化利用集成技术。与传统技术相比,该技术在大幅节省占地面积和空间的同时,还可大幅节约设备建设所用钢材。工业规模试验结果表明,不同浓度的氨废水经该技术处理后可转化为氨质量分数大于22%的氨水资源,处理出水中氨氮质量浓度低于8.2 mg/L,尾气中未检测到氨,处理结果优于GB 31573—2015《无机化学工业污染物排放标准》。  相似文献   
8.
采用特异性移动床生物膜反应器(SMBBR)和厌氧生物滤池(AF)组合工艺处理高氨氮农药废水。考察了HRT、pH和DO等工艺条件对SMBBR-AF-SMBBR组合工艺运行稳定期COD和氨氮去除率的影响。试验结果表明,在进水COD为2 408~7 440 mg/L、ρ(NH_4~+-N)为160.21~433.84 mg/L、TN为208.27~537.65 mg/L、HRT为8d、pH为8.0、DO为4 mg/L的条件下,处理后出水平均COD为342 mg/L,COD去除率达92.3%;ρ(NH_4~+-N)小于4.0mg/L,氨氮平均去除率为89.2%;TN小于50 mg/L,平均TN去除达83.0%。出水各指标均优于原A2O工艺出水。  相似文献   
9.
采用玉米芯为碳源,聚乙烯醇(PVA)为包埋载体,饱和硼酸(H3BO3)为交联剂,研究了硫酸盐还原菌污泥(SRBS)、铁屑、麦饭石共固处理合成煤矿酸性废水的最优配比与机理,并分析了固定化过程中小球稳定性及活性的变化规律。实验结果表明,SRBS投加量是影响处理效果的最显著因子,当投加30%SRBS、2%铁屑、3%麦饭石时SO2-4、Mn2+去除率分别为94.13%和84.39%,溶液p H为7.03,未检测出Fe2+;随着交联时间的延长,小球膨胀率及SO2-4还原率分别呈线性与指数下降,从保持小球稳定性与活性角度考虑,可将交联时间设定为4~8 h;该法可为市政污泥的处置以及生物法处理煤矿酸性废水的工程应用提供技术参考。  相似文献   
10.
采用活性炭吸附和两级Fenton氧化组合工艺对高盐度对氨基苯酚生产废水进行了处理实验研究。结果表明,p H值对活性炭去除有机物的影响较小。当活性炭投加量为4 g/L时,TOC去除率61%。分级加药可以有效提高Fenton氧化对有机物的去除效率。在温度为25℃、p H为3、30%H2O2投加量为3%(V/V)、Fe2+/H2O2摩尔比为0.05时,两级Fenton氧化处理后,出水TOC降至150 mg/L以下。此外,Fenton氧化后形成氢氧化铁污泥颗粒粒径为4.5μm,经过聚丙烯酰胺(PAM)絮凝之后,污泥的粒径明显增加,过滤特性改善。PAM絮凝效果依赖于溶液的p H值,当p H超过10后会失去作用,故在使用过程中需要严格控制溶液的p H值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号