首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   8篇
综合类   12篇
基础理论   1篇
污染及防治   1篇
灾害及防治   1篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2012年   3篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
利用NCEP逐6 h再分析资料、地面加密观测、探空、雷达资料,分析得出“利奇马”致灾暴雨是在长时间稳定维持的天气尺度环流背景下形成的。冷空气在降水所起的作用表现在:(1)长时间维持的弱冷空气与偏南暖湿气流交汇形成了边界层辐合线,辐射升温和暖湿气流的输送加大了辐合线两侧的温度和露点梯度,在高温高湿的有利环境下,对流在辐合线附近强烈发展。(2)高空槽后冷空气由“利奇马”环流西北侧渗入,先后形成3个冷平流中心,分别对应3个阶段的降水。(3)冷暖空气在降水区的持续辐合抬升作用增强了降水,最强降水时段发生在锋区垂直方向坡度最大的时段。(4)水平锋生有利于水汽输送和辐合抬升,垂直锋生有利于对流不稳定能量的累积和触发。冷空气形成的水平辐合和抬升造成大范围上升运动,使得锋生和垂直锋消同时存在,最强降水时段发生在水平锋生最强的时段。  相似文献   
2.
气象条件对大气污染物的扩散和传输有重要影响,准确分离和定量气象因素对空气质量的影响是评估大气污染控制政策有效性的前提.本研究利用APEC会议期间及前后(2014-10-15~2014-11-30)北京城区朝阳观测站点SO_2、NO、NO_2、NO_x、CO、PM_(2.5)、PM_1和PM_(10)以及气象因素的观测数据,采用多元线性回归分析方法,定量评估了气象条件和空气污染控制措施对APEC期间北京空气质量的影响.在假定排放条件不变的情况下,基于气象因素参数建立的预测污染物浓度的多元线性回归模型模拟效果较为理想,决定系数R~2在0. 494~0. 783之间.控制措施使得APEC控制期SO_2、NO、NO_2、NO_x、CO、PM_(2.5)、PM_1和PM_(10)浓度分别降低48. 3%、53. 5%、18. 7%、40. 6%、3. 6%、34. 8%、28. 8%和40. 6%,气象因素使得APEC控制期SO_2、NO、NO_2、NO_x、CO、PM_(2.5)、PM_1和PM_(10)浓度分别降低1. 7%、-2. 8%、18. 7%、4. 5%、18. 6%、27. 5%、30. 6%和35. 6%.气象因素和控制措施共同作用使得APEC控制期北京空气质量得到了明显改善.控制措施对SO_2和氮氧化物浓度的下降起主导作用,气象因素对CO浓度的下降起主导作用,气象因素和控制措施对颗粒物浓度降低的贡献相当.本研究还利用相对权重方法研究了气象因素对污染物浓度影响的贡献,结果表明影响不同污染物浓度的决定性气象因素不同.  相似文献   
3.
利用GC955在线气相色谱仪分别于2019年7月和2020年1月在天津市区开展苯系物(BTEX,包括苯、甲苯、乙苯、间/对-二甲苯和邻-二甲苯)实时在线观测,对典型污染过程中BTEX的浓度水平、组成及演化机制进行了研究,并运用特征物种比值法对BTEX的来源进行了定性分析,最后运用US EPA的人体暴露分析评价方法对BTEX健康风险进行评估.结果表明,臭氧和霾污染过程中BTEX体积分数平均值分别为1.32×10-9和4.83×10-9,其中苯的体积分数占比最大,其次是甲苯、乙苯和二甲苯占比最小.2020年1月BTEX体积分数很大程度上受到西南方向短距离传输的影响,而在2019年7月BTEX浓度受到本地排放的影响.BTEX浓度水平在2019年7月受到温度和相对湿度的共同影响,而在2020年1月当温度较低时BTEX浓度对相对湿度的变化更敏感.天津市区BTEX在霾污染过程中受生物质燃烧/化石燃料燃烧/燃煤排放的影响较大,而在臭氧污染过程中除了受到燃烧排放源影响,交通源排放在很大程度上也有影响.臭氧污染和霾污染过程中BTEX的HI分别为0.072和0.29,均处于EPA认定的安全范围内.苯的致癌风险在清洁天和污染过程中均高于EPA规定的安全阈值,需引起高度重视.  相似文献   
4.
利用东部沿海城市天津大气边界层观测站(以下简称天津站)和西部兰州大学半干旱气候与环境观测站(SACOL)一年的臭氧和NOx体积浓度观测资料,对比分析了两观测站点近地层臭氧浓度的逐月变化、频率分布、日变化特征以及与NOx之间的相关关系.结果表明,两观测站点臭氧浓度月均值变化呈现出很好的一致性,均在4-7月出现高值,12月至次年2月出现低值,SACOL臭氧浓度月均值的最大值和最小值出现时间要比天津站推迟一个月.天津站臭氧体积浓度主要分布在10~50μL/m3,SACOL则集中在10~70 μL/m3,春、夏季两观测站点臭氧体积浓度低于10 μL/m3的频率均很小,秋、冬季两观测站点臭氧浓度频率分布特征类似.两观测站点臭氧浓度日变化在4个季节均呈现典型的单峰型分布,SACOL臭氧浓度日最大值出现时刻要比天津站晚2h.两观测站点臭氧浓度与NOx、NO2、NO的浓度之间均呈显著的负相关关系.天津站与臭氧浓度的相关性最强的为NO,而SACOL则是NOx.  相似文献   
5.
使用在线分析仪于2018年7月至2019年2月在北京城区对大气中的苯系物(BTEX)进行连续监测.监测期间BTEX平均体积分数为(5.05±5.23)×10-9,其中苯、甲苯、乙苯、间/对二甲苯及邻二甲苯的体积分数分别为(1.51±1.70)×10-9、(2.22±2.05)×10-9、(0.38±0.46)×10-9...  相似文献   
6.
SO_2是北京大气中重要的污染气体.为探讨亚太经合组织(APEC)峰会前后北京大气SO_2的垂直分布及其对二次硫酸盐(SO_4~(2-))生成的影响,我们于2014年10月21日至11月30日在地面和北京325 m气象塔260 m高度处同步开展了气体SO_2和亚微米颗粒物中硫酸盐(SO_4~(2-))实时连续在线观测.结果显示,采暖前,北京地面SO_2浓度较低,但高层由于显著受到区域输送的影响浓度较高,两层污染物变化趋势也存在明显差异.采暖后,即APEC后,受本地供暖排放影响,SO_2和SO_4~(2-)浓度显著增加,两层的总体差异也相应减小,变化趋势也更为一致.湿度对SO_2的液相转化起关键作用.我们发现近地面SO_2的转化率(SOR)显著高于260 m,这主要与地面较高的湿度相关.事实上,SOR随着湿度增加而迅速增大,进一步凸显了湿度对SO_2液相氧化的影响.另外,我们也发现SO_2特别是260 m在低湿范围(RH40%)内随湿度增加而逐渐升高,但在高湿范围(RH50%)内则呈下降趋势,说明不同湿度范围内的来源或者生成机制可能有所不同.SO_4~(2-)和PM_(2.5)浓度均随着湿度的增加而增加,但不同湿度范围,增加速率不同.通过相关性和和后向轨迹分析表明,区域输送(特别是途经北京西部和南部的气团)和本地燃煤排放分别是采暖前后污染物的主要来源.  相似文献   
7.
大气中的挥发性有机物(volatile organic compounds,VOCs)作为对流层臭氧和二次有机气溶胶的前体物,在光化学反应和细颗粒物污染中发挥着重要的作用.本研究于2017年9月1~27日在上甸子区域背景站开展VOCs的连续在线观测,对VOCs的浓度水平,时空变化特征,化学反应活性及其对臭氧生成的贡献进行了研究,并运用特征物种比值法对初始VOCs的来源进行了分析.结果表明, 2017年9月上甸子站总VOCs平均体积分数为12.53×10~(-9),其中,烷烃是体积分数最大的组分,占到了总VOCs的65.3%,其次是烯烃和芳香烃,分别占到了总VOCs的26.7%和6.5%.从大气化学活性来看,上甸子站总的L~(·OH)(·OH损耗率)为5.2 s~(-1),其中C4~C5烯烃占到了61%,其次是C2~C3烯烃,占到了12.8%.VOCs的臭氧生成潜势平均值为36.5×10~(-9),烯烃是贡献最大的组分,占到了71.2%.烯烃中又以C4~C5烯烃的贡献最为突出,而体积分数较大的烷烃对臭氧生成的贡献却不大.对特征物种的比值研究发现,上甸子站VOCs受生物质燃烧和燃煤排放的影响较大,除此之外,交通排放源也有一定的影响,完全不受工业排放源的影响.  相似文献   
8.
兰州市两场典型降水事件稳定同位素特征及其水汽来源   总被引:2,自引:0,他引:2  
为了加深对短时间尺度下降水同位素变化规律的认识,利用兰州市2019年夏季典型的长历时弱降水(6月26~27日)和短时强降水(7月28日)事件短时间尺度(10 min和30 min)的连续样品,结合HYSPLIT模型对降水氢氧稳定同位素的变化特征及其机制进行分析.结果表明,降水初始阶段,二次蒸发效应使事件内连续降水的大气水线(SMWL)斜率偏小.连续样点大都分布在GMWL和LMWL上方,且SMWL的截距都大于局地年平均过量氘(8.13),说明降水一定程度上经历了水汽再循环. 6月26~27日连续2 d的降水事件,第1 d的δ~(18)O呈"L"型变化,第2 d呈波动变化,δ~(18)O不遵循降雨量效应. 7月28日,δ~(18)O呈平稳下降趋势,变化范围超过9‰. 6月26日, 500 m高度层水汽输送路径整体较短, 27日以局地水汽蒸发为主. 7月28日降水的水汽来源变化不明显,气团较单一,同位素值无明显波动.因此,对于短时间尺度下的单次降水事件,水汽来源的异同也是降水期间同位素变化的原因之一.  相似文献   
9.
基于2015~2019年北京生态环境监测和气象数据, 分析了延庆地区山谷风对PM2.5浓度的影响, 揭示了含山谷风环流污染过程(事件1)与未有山谷风污染过程(事件2)初始阶段的异同及其气象影响机制.结果表明, 延庆持续性污染过程集中在9月~次年3月, 共计63次, 其中27次(43%)伴随1d或多天的山谷风日, 39d山谷风中有32d(82%)出现在污染过程的初始阶段, 18%出现在峰值阶段; 36次过程未出现山谷风日.山谷风日逐时PM2.5浓度大于非山谷风日4.5~15.4μg/m3, 全日差值最大时段为谷风阶段(15:00~19:00)均大于13μg/m3, 山谷风日存在SSE-ESE风频中心0.59%, 15:00~16:00风速3.3m/s左右, 非山谷风日风频中心在WSW-SW和SE-ESE, 最大值为0.41%, 风速较山谷风日小.事件1和2初始阶段PM2.5浓度变化关键期为15:00~19:00, 事件1风向E-SSE风速2~4m/s, PM2.5增长速率大于事件2, 与露点变化趋势基本一致, 23:00事件1PM2.5浓度显著高于事件2 20μg/m3左右, 污染过程发展初期出现的山谷风环流谷风阶段的偏东南风形成气溶胶和绝对水汽的区域传输, 对PM2.5浓度的升高有正贡献.平原空气污染过程(延庆未出现)特殊污染型占比20%, 该类污染型白天风频中心分布分散, NNW-WNW、SW-SSW和ENE-NNE均有0.7%左右的风频中心, 未出现S-ESE的风频.  相似文献   
10.
基于2015~2020年京津冀地区生态环境监测数据和多源气象数据,分析了北京地区0~3km中低空垂直风切变在不同PM2.5等级下的演变特征。结果表明,风速日变化特征随着PM2.5浓度升高而逐渐减弱,PM2.56级污染时近地面风速日变化基本消失,甚至反向变化;白天边界层风速增大时段对应10m/(s·km)以下的风切变,20:00后增大至12~14m/(s·km),该现象随着PM2.5污染加重变得更为显著,白天时段近地层垂直风切变较小值(<6m/(s·km))维持,可能是污染严重的信号之一;基于旋转经验正交函数分解法(REOF),将污染日下中低空垂直风切变分为无扰动型和压缩型,压缩型低压强度略强于无扰动型,无扰动型的PM2.5浓度均值、峰值较压缩型更高,逆温强于压缩型,另外,无扰动型PM2.5浓度增长期和边界层高度(PBLH)反向变化,压缩型PM2.5浓度增长期和PBLH同向变化。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号