首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
研究农业全要素生产率时空演进规律对于合理制定农业转型升级政策具有重要意义。在使用DEA-Malmquist指数模型测算出重庆市37个县(区)2000-2016年农业全要素生产率增长的基础上,结合空间分析方法和核密度估计方法考察农业TFP的时空演进特征,并识别出问题区域。研究表明:(1)2000-2016年间重庆市农业全要素生产率呈上升趋势,农业TFP指数呈“U”型和阶段性波动的变化趋势,并且表现出明显的空间不平衡性。(2)农业TFP指数增减趋势与技术进步指数的变化趋势基本一致,技术进步是影响农业全要素生产率的主要因素。(3)从全市来看,农业TFP的核密度曲线不断向右移动,且波峰高度持续上升,波峰形态由“单峰”分布向“多峰”分布转变,说明重庆市农业全要素生产率的地区差距在考察期内呈增大趋势。(4)依据TFP增长、技术进步和技术效率的关联关系,识别出三种类型的问题区域,并针对每类问题区域提出农业转型发展的政策建议。  相似文献   

2.
以湖南省五星级乡村旅游区为研究样本,运用最邻近指数、地理联系率、核密度分析、空间热点聚类等空间统计方法,研究了湖南省五星级乡村旅游区空间分布特征及影响因素。结果表明:(1)湖南省五星级乡村旅游区总体上呈集聚分布态势。(2)在空间分布上呈现“东多西少”的特征,大体可分为湘中、湘北、湘西和湘南四个片区;16个一阶热点区主要沿“常德—长株潭—衡阳—郴州”分布,二阶热点区只集中在长株潭地区;五星级乡村旅游区大致形成了以长株潭为核心,沿交通干线向外辐射的三个产业发展轴带。(3)五星级乡村旅游区空间分布主要受到地形水文、经济社会、交通区位、客源市场、地方政策等多重因素方面的影响;依托自然地理优势、城市经济和政策供给,五星级乡村旅游区大体呈现出“环山、滨水、围城、沿线”的空间分异格局。依据分析结果,结合当前湖南省乡村旅游发展的现状,从政策环境、产业发展、乡村治理等方面提出相关政策建议。  相似文献   

3.
厘清区域生态系统健康水平及其影响因素对促进可持续发展意义重大.通过构建生态系统健康评价模型,分析了京津冀地区2000年、 2010年和2020年生态系统健康时空演变特征,利用地理探测器与地理加权回归模型(GWR)识别了生态系统健康水平的影响因子.结果表明,研究期内京津冀地区生态系统自然健康指数整体上为上升趋势,北部和西部区县优于东南部区县;京津冀地区生态系统服务指数整体上为下降趋势,呈现出北高南低的空间分异格局;京津冀地区生态系统健康水平呈现先上升再下降趋势,在空间分布上呈现显著的空间异质性,大城市的中心城区生态健康水平较低,燕山和太行山区以及环渤海区县,生态系统健康水平较高;研究期内京津冀地区生态系统健康的空间格局保持相对稳定,热点区及次热点区主要分布在冀北山地和太行山区,冷点区及次冷点区主要分布在东南平原区和部分大城市周边地区.人口密度、年均气温、人均耕地面积和城镇化水平为京津冀地区生态系统健康的主导因子,均与其呈现负相关驱动特征.  相似文献   

4.
基于产业结构视角的县域农业增长空间特征研究   总被引:1,自引:0,他引:1  
基于产业结构视角,系统揭示区域农林牧渔业增长的空间特征,有助于制定科学的农业发展策略。研究借助Esteban-Marquillas拓展模型将县域农业增长分解为份额分量、产业结构分量、净竞争分量和资源配置分量,并借助ESDA方法系统分析2000—2014年京津冀地区县域农林牧渔业增长的空间特征。结果表明:1)2000—2014年,京津冀地区农林牧渔业总体呈现增长态势,且种植业和牧业是农业增长的主要产业。2)京津冀地区县域农业增长具有显著的同质集聚性,集聚效应表现为渔业>牧业>林业>种植业。就产业各分量而言,份额分量和结构分量的集聚效应最强,表现为渔业>牧业>林业>种植业;净竞争分量和资源配置分量仅有种植业和牧业的集聚效应通过统计性检验,并以种植业最强;各分量的显著高高(或低低)集聚县域表现出低重合度,京津冀地区县域农业生产格局尚待优化。3)农业资源配置流向相对合理的Ⅰ类型(竞争优势+专业化程度强)和Ⅳ类型(竞争劣势+专业化程度低)的县域数量不足50%(渔业除外),表明县域农业资源配置的比较优势不突出,县域间分工协作意识不强。建议加强县域间的经济联系和产业合作,提升资源配置效率,加快实现农业结构升级和布局优化。  相似文献   

5.
根据收集的京津冀区域农业氨排放源活动水平数据,使用排放因子法建立了2014年京津冀地区农业氨排放清单.结果表明,2014年京津冀地区农业源氨排放总量为1750695t,平均排放强度为8.09t/km2;河北省、北京市和天津市农业氨排放量分别为1594087t、58822t和97786t.;猪和蛋鸡是畜禽养殖业中氨排放的主要来源,分别占31.29%和26.07%.模拟结果表明,农业氨减排使京津冀地区PM2.5的年均浓度下降12.04μg/m3,下降比例约为18.36%,4月份和7月份农业氨减排对PM2.5的影响较大,而1月份影响较低;农业氨减排使无机盐(硫酸盐+铵盐+硝酸盐)的年均浓度下降10.00μg/m3,年均浓度下降比例为41.84%,对硝酸盐的影响最大,铵盐次之,硫酸盐最小.  相似文献   

6.
明确濒危水鸟栖息地分布并加以保护对于维持水鸟物种多样性和提高湿地环境质量具有重要意义.自1980年以来京津冀地区水鸟数量出现较大波动,为了分析濒危水鸟潜在分布区域及其变化特征,借助GIS平台和MaxEnt模型,基于2015年濒危水鸟"出现点"信息,定量识别了影响京津冀地区濒危水鸟分布的主要驱动因素和贡献率,并预测了2050年RCP2.6、RCP4.5、RCP8.5(依次代表低、中、高3种CO2浓度排放模式)3种气候情景下濒危水鸟的潜在适宜区分布和保护空缺规律.结果表明:①京津冀地区濒危水鸟共有9种,东方白鹳、遗鸥和黑鹳3种濒危水鸟潜在适宜区面积较大.东方白鹳和遗鸥适宜区主要集中于环渤海湾沿岸和北京市中南部,黑鹳则主要集中于北京市南部房山区和东北部.②与2015年相比,2050年RCP2.6、RCP4.5和RCP8.5三种气候情景下濒危水鸟适宜区面积均较大,相应适宜区面积增幅依次为96.24%、103.94%和65.51%,适宜区空间分布上向西南和东北方向扩张.③国家自然保护区对濒危水鸟潜在适宜区和热点区的覆盖率较低,相较天津市,河北省和北京市对这两个区域的覆盖不足.④在京津冀地区尺度下,不同情景下保护区覆盖濒危水鸟适宜区比例依次为基准情景(1.26%)> RCP8.5情景(1.11%)> RCP2.6情景(0.70%)> RCP4.5情景(0.29%),保护区覆盖热点区比例依次为RCP4.5情景(0.83%)>基准情景(0.77%)> RCP8.5情景(0.08%)> RCP2.6情景(0).研究显示,以单个水鸟为单位分析濒危水鸟潜在适宜区分布格局,能够精准有效地揭示国家自然保护区对濒危水鸟的覆盖情况.   相似文献   

7.
红色旅游发展效率表征旅游区红色旅游高质量发展水平。以黔北黔西红色旅游区为研究对象,借助DEA模型及Malmquist指数对2014—2019年该区域17个县(市、区)的红色旅游发展效率进行测度,同时利用核密度函数和多元线性回归模型分别剖析了其空间演化特征与关键影响因素。研究发现:(1)研究区域内红色旅游发展效率整体偏低,受技术进步的积极影响,多数县(市、区)红色旅游发展效率呈稳步提升状态;(2)红色旅游发展效率具备空间集聚性和异质性的特征,整体呈现“M”型双峰分布,区域分布差异较大;(3)技术创新、红色旅游资源优势度、交通便利性是影响该区域红色旅游发展效率的主要因素,政府对旅游经济干预程度、经济发展水平和人才规模对该区域红色旅游发展效率的影响较小,产业结构对改善该区域红色旅游发展效率的积极影响尚未凸显。  相似文献   

8.
京津冀PM2.5时空分布特征及其污染风险因素   总被引:1,自引:0,他引:1       下载免费PDF全文
为分析京津冀及其周边区域2013年典型污染事件中PM2.5的时空分布特征及污染风险因素,根据国家城市环境空气质量实时发布数据和京津冀地区地理国情信息监测成果,采用空间数据挖掘方法对PM2.5污染的热点区域进行了划分;并采用地理探测器定量分析了PM2.5污染风险因子及其影响程度. 结果表明:在选取的京津冀6个城市中,在PM2.5污染事件统计上存在保定—廊坊—北京—天津—承德—张家口的污染顺序. PM2.5污染在空间上呈河南省(山东省)—河北省—北京市(天津市)一线的带状分布特征,在单次污染事件中,城市间的PM2.5污染存在空间运移关系. 空间热点探测表明,京津冀及其周边区域主要分为5个热点聚集区,其中3个高值区分布在北京市、天津市、河北省和山东省的中部,面积分别为5.31×104、10.26×104、5.04×104 km2. 在8个污染风险因子中,污染企业总数(影响力为0.97,下同)、降水量(0.93)、地形坡度(0.89)对PM2.5污染的影响显著高于其他风险因子;其他风险因子影响力排序依次为人口数量(0.60)、降水量大于0.1 mm的降水日数(0.57)、地表覆盖类型(0.52)、年均相对湿度(0.51)、年均风速(0.33),但风险因子间相比没有显著性差异. 研究显示,京津冀地区PM2.5污染的主要因素是污染物排放,其次,气象要素中的年降水量和自然地理环境中的地形坡度也是影响PM2.5污染特征的重要风险因子.   相似文献   

9.
利用1997—2016年中国31个省份的面板数据,测算基于农业污染物影子价格的农业低碳效率,探讨各省份农业低碳效率幻觉存在与否的问题,并在此基础上分析农业低碳效率幻觉程度的影响因素。结果表明:(1)1997—2016年,中国农业低碳效率均值呈先下降后上升的总体趋势,且“东—中—西”梯度递减的态势明显。(2)总体上,存在农业低碳效率幻觉的省份数量呈先增后减趋势;分区域看,东部和中部存在农业低碳效率幻觉的省份数量逐渐减少,而西部地区则不断增加。(3)农业经济发展水平、农业生产节能技术水平、农业发展重视程度、农业产业结构对农业低碳效率幻觉程度具有负向影响,而农业规模化水平、农业受灾率和农业人力资本的影响效应为正。  相似文献   

10.
绿色发展是旅游业可持续发展理念的重要组成部分,是旅游业奉行以人为本、生态至上和全面发展的新价值观。在梳理旅游业绿色发展概念及内涵基础上,构建旅游业绿色发展效率评价体系,运用SBM-Undersirable模型、核密度估计、空间马尔科夫链等方法,探讨2008—2018年中国31个省(市、自治区)旅游业绿色发展效率(TGDE)时空演化特征及影响机理。研究发现:(1)时间和空间变化方面,TGDE总体处于中等偏下水平,时间上呈“W”型变化形态,“下降—上升—调整”阶段特征显著;空间呈“东—中—西”递减分布,内部差异为西部地区>东部地区>中部地区,低、中、高效率由“金字塔”向“菱形”结构转变,高效率地区集中于东部沿海,中等效率多分布于中西部地区,低效率位于胡焕庸线两侧。(2)动态演进方面,TGDE始终存在两极分化现象,但区域协调性逐步增强,具有较强平稳性,难以实现跨越式发展,空间向上转移省份比较集中,以中西部为主,向下调整省份较少,且存在明显的空间溢出效应,溢出影响具有不对称性。(3)影响机理方面,总体上,经济水平、产业结构、政府规制、教育水平和旅游资源影响因子与TGDE间存在显著的正向关系,对外开放程度的作用不显著,但各因子的影响程度、作用机理及条件具有较强地域性。  相似文献   

11.
以机动车碳排放模型为基础,结合不同类型机动车存活曲线,建立分车龄的车队构成,并利用年均行驶里程和燃油消耗量,分析了京津冀地区2005~2020年道路碳排放量的演变及区域分布特征.结果显示,河北省道路碳排放量增长迅速,近5a仍以7.14%的年均增长率快速增长,而北京和天津两市的道路碳排放已经进入低速增长期,近5a的年均增长率分别仅为1.01%和2.27%.小型客车一直都是道路碳排放的主力车型,其碳排放量占京津冀道路碳排放总量50%以上;轻型货车在北京市道路碳排放中的贡献越来越突出,而河北和天津两地轻型和重型货车正在逐渐发展为道路碳排放增长的主要驱动因素.从京津冀道路碳排放的4km×4km网格分布图可知,因北京和天津拥有更密集的道路,其碳排放强度远高于河北省.  相似文献   

12.
本研究结合大气环境观测数据,应用潜在源分析法(PSCF)和浓度权重轨迹分析法(CWT),以及基于WRF-CMAQ模式的传输矩阵和传输通量计算方法,研究分析了2019年秋冬季京津冀典型城市的大气污染特征与成因,量化评估了京津冀地区与周边省份之间的PM2.5传输贡献.结果表明,京津冀地区冬季较秋季污染严重,且重污染时段PM2.5浓度均与相对湿度呈显著的正相关,和风速呈显著的负相关;京津冀典型城市北京、天津和石家庄的潜在源区主要分布在京津冀本地、山西、内蒙古中部地区和山东地区,这与CWT结果基本吻合.京津冀各省域的PM2.5以本地排放贡献为主,北京、天津和河北的本地贡献率范围为54.33%~66.01%,京津冀受区域外传输的贡献率范围为0.11%~26.54%.传输通量结果表明,冬季PM2.5的传输主要受高空西北气流的作用,尤其清洁天气,高风速驱动清洁气团流入;秋季则主要受低空东南气流作用;传输通量呈现出显著的垂直分布特征,高空区域传输作用更为活跃,传输通量的流入/流出以及垂直分布与污染级别和RH呈现非线...  相似文献   

13.
京津冀地区雾霾污染生态补偿标准研究   总被引:4,自引:1,他引:3  
以京津冀地区雾霾污染作为研究对象,采用京津冀地区2006—2015年雾霾污染的空间面板数据,引入大气污染物减排成本模型,比较了京津冀各地区雾霾污染治理成本高低;继而基于机会成本法,核算了京津冀地区雾霾污染生态补偿标准.结果表明:河北省雾霾治理成本显著低于北京市和天津市,由河北省承担更多的雾霾污染治理任务,能使京津冀地区雾霾污染治理成本达到最小化;在京津冀地区联合治理雾霾污染过程中,河北省因限制工业增长对其经济发展带来负面影响,因此,北京市和天津市应给予河北省相应的生态补偿.最后依据研究结论提出完善区域联防联控机制的政策建议,如成立跨区域联合治理机构,健全雾霾污染生态补偿立法,设立雾霾污染生态补偿专项基金等,以此来促进京津冀地区雾霾污染生态补偿方案顺利实施.  相似文献   

14.
为研究京津冀地区天然源挥发性有机化合物(BVOCs)近20a排放量及时空分布特征,本文基于卫星遥感解译获得的2000年、2005年、2010年、2015年、2020年共5期中国土地利用数据,计算获得了京津冀地区各市县BVOCs排放量及排放组成,同时对京津冀地区近20a的BVOCs排放的时空分布进行了特征分析.结果表明,近20a京津冀地区BVOCs平均排放总量为76.40万t/a,其中河北省、北京市、天津市的平均排放总量分别为59.11万t/a,15.29万t/a,2.00万t/a;按照排放组成分析,ISOP平均排放总量为16.80万t/a,占总排放量的21.99%,TMT平均排放总量为29.62万t/a,占总排放量的38.77%,OVOCs平均排放总量为29.97万t/a,占总排放量的39.23%.根据排放时间特征分析,京津冀地区冬季BVOCs排放量最低、夏季BVOCs排放量最高.BVOCs排放的空间分布与土地利用类型和植被分布密切相关,不同土地利用类型的BVOCs排放贡献具有显著差异,近20a京津冀地区林地、耕地、草地的BVOCs平均排放量分别为60.33万t/a,12.78万t/a,2.31万t/a,分别占总排放量的78.90%,16.79%,3.04%.京津冀地区BVOCs空间排放分布差异比较明显,北部、东北部的整体排放量明显高于南部、东南部.本研究可为BVOCs的计算提供研究思路,同时可为京津冀地区空气污染治理提供有关基础数据.  相似文献   

15.
京津冀地区水资源供需矛盾突出,迫切需要分析其用水量变化与社会经济发展之间的内在联系. 在分析用水总量变化时空特征的基础上,采用因素分解模型研究了2003—2013年京津冀地区产业用水量变化的规模效应、结构效应和技术效应. 结果表明:京津冀地区产业用水量10年间下降了8.84%,是京津冀地区实现经济增长和水资源利用脱钩的主要影响因素;规模效应10年间累计增加了267.95×108 m3,是导致产业用水量增长的唯一驱动因素;结构效应和技术效应都倾向于减少产业用水量,分别累计减少124.17×108和164.11×108 m3;技术效应是北京产业用水量减少的主要原因,10年间累计减少了79.14%的产业用水量;而天津的结构效应要强于技术效应,10年间分别累计减少81.17%和73.71%的产业用水量;河北的结构效应和技术效应10年间分别累计减少51.37%和68.33%的产业用水量,相比京津仍有较大潜力. 研究显示,调整产业结构、推广节水技术是缓解京津冀水资源短缺压力的有效途径,未来河北在承接产业转移的同时,应紧密结合产业结构的优化和经济增长方式的转变.   相似文献   

16.
为更好地了解京津冀地区NO2浓度的长期时空分布变化特征,对2005—2015年京津冀地区对流层NO2柱浓度数据进行了统计分析.结果表明,京津冀地区对流层NO2柱浓度在2005—2010年增加明显,年均复合增长率为6.8%,并在2010年达到峰值,为1 329.07×1013 mol/cm2;2010—2013年保持相对稳定;2013—2015年显著下降,降幅达26.2%.2015年NO2柱浓度为964.43×1013 mol/cm2,基本与2005年的浓度水平持平.北京地区NO2柱浓度最先开始下降并保持降低趋势,其中北京市城区降幅远大于郊区,并在2015年达到最低值,为1 647.38×1013 mol/cm2;天津市城、郊区NO2柱浓度变化相近,总体上均呈先增后减的趋势,并且均在2010年达到峰值,分别为2 686.96×1013、2 019.36×1013 mol/cm2;而河北省西南部(石家庄、邢台、邯郸市)在近两年降幅最为明显,均在35.0%以上.京津冀对流层NO2柱浓度呈由南向北递减的空间分布趋势,高值区主要分布于京津唐一带以及河北省南部沿太行山一带.研究显示,虽然近年来京津冀地区NO2柱浓度降幅明显,但相比于周边地区仍面临较大的减排压力.   相似文献   

17.
为研究京津冀区域臭氧时空分布特征,并估算区域传输贡献,对2017~2019年京津冀区域68个国控站点资料进行主成分分析,并采用TCEQ法估算京津冀区域及细分的次区域内O3背景浓度.结果表明,京津冀区域O3浓度整体上呈现南高北低态势,地理位置的差异及其距离对于各城市臭氧浓度的均匀性分布影响较大.经最大方差法旋转后,主成分分析结果可将京津冀区域划分为河北省中南部、京津冀北部以及渤海西岸地区等3个稳定的次区域.对3个次区域分别采用TCEQ法估算O3背景浓度,计算得到3个次区域本地生成O3浓度依次为71,60,59μg/m3,区域背景浓度占O3日最大8h浓度的比值依次为34.3%,39.4%,42.2%.京津冀区域O3本地生成占主导,区域传输也不容忽视.  相似文献   

18.
2016年12月16~21日,京津冀地区经历了一次大范围重污染过程.本文基于空气质量监测资料及实况天气图分析了此次极端区域重污染事件的天气成因,并利用嵌套网格空气质量预报模式(NAQPMS)对京津冀主要城市PM2.5污染来源进行定量解析.结果表明:污染前中期500hPa高空为偏西气流伴空中回暖,后期转槽前偏南气流增温增湿明显;对应地面气压逐渐降低,辐合不断增强;垂直方向上,逆温层不断抬升加厚,中低层暖平流明显,风垂直切变小;大气长时间处于极度静稳状态也是造成此次重污染过程的天气因素.污染期间,京津冀各主要城市PM2.5污染本地贡献占40%~60%;北京市PM2.5本地贡献为48%,其中16~17日北京市主要受沿太行山东侧的西南向输送通道(邯郸-邢台-石家庄-保定-北京)影响,其后风速减小,北京本地及周边城市贡献增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号