首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
An air quality modeling system was used to simulate the effects on ozone concentration in the northeast USA from climate changes projected through the end of the twenty-first century by the National Center for Atmospheric Research’s (NCAR’s) parallel climate model, a fully coupled general circulation model, under a higher and a lower scenario of future global changes in concentrations of radiatively active constituents. The air quality calculations were done with both a global chemistry-transport model and a regional air quality model focused on the northeast USA. The air quality simulations assumed no changes in regional anthropogenic emissions of the chemical species primarily involved in the chemical reactions of ozone creation and destruction, but only accounted for changes in the climate. Together, these idealized global and regional model simulations provide insights into the contribution of possible future climate changes on ozone. Over the coming century, summer climate is projected to be warmer and less cloudy for the northeast USA. These changes are considerably larger under the higher scenario as compared with the lower. Higher temperatures also increase biogenic emissions. Both mean daily and 8-h maximum ozone increase from the combination of three factors that tend to favor higher concentrations: (1) higher temperatures change the rates of reactions and photolysis rates important to the ozone chemistry; (2) lower cloudiness (higher solar radiation) increases the photolysis reaction rates; and (3) higher biogenic emissions increase the concentration of reactive species. Regional model simulations with two cumulus parameterizations produce ozone concentration changes that differ by approximately 10%, indicating that there is considerable uncertainty in the magnitude of changes due to uncertainties in how physical processes should be parameterized in the models. However, the overall effect of the climate changes simulated by these models – in the absence of reductions in regional anthropogenic emissions – would be to increase ozone concentrations.  相似文献   

2.
臭氧是一种存在于地球臭氧层和近地面的气体,它对人类和环境是否有益取决于大气中存在的位置。高空臭氧层使人类免受紫外线伤害,而近地面臭氧是光化学烟雾产生的主要污染物,损害农作物、树木和其他植物生长,危害人体健康诱发儿童哮喘等疾病。本文结合2013年8月12日常州市出现的臭氧污染天气,利用气象和空气自动监测数据,对污染过程、变化特征和成因进行了分析。结果表明,在连续高温、太阳辐射强度大、风速低、大气扩散条件差等气象因素和臭氧前体物(NMHC)较高等不利条件下,易形成臭氧污染天气,导致空气质量下降。  相似文献   

3.
Climate change, involving changes in mean climate and climatic variability, is expected to severely affect agriculture and there is a need to assess its impact in order to define the appropriate adaptation strategies to cope with. In this paper, we projected a scenario of European agriculture in a +2°C (above pre-industrial levels) world in order to assess the potential effect of climatic change and variability and to test the effectiveness of different adaptation options. For this purpose, the outputs of HadCM3 General Circulation Model (GCM) were empirically downscaled for current climate (1975–2005) and a future period (2030–2060), to feed a process-based crop simulation model, in order to quantify the impact of a changing climate on agriculture emphasising the impact due to changes in the frequency of extreme events (heat waves and drought). The same climatic dataset was used to compare the effectiveness of different adaptations to a warmer climate strategies including advanced or delayed sowing time, shorter or longer cycle cultivar and irrigation. The results indicated that both changes in mean climate and climate variability affected crop growth resulting in different crop fitting capacity to cope with climate change. This capacity mainly depended on the crop type and the geographical area across Europe. A +2°C scenario had a higher impact on crops cultivated over the Mediterranean basin than on those cultivated in central and northern Europe as a consequence of drier and hotter conditions. In contrast, crops cultivated in Northern Europe generally exhibited higher than current yields, as a consequence of wetter conditions, and temperatures closer to the optimum growing conditions. Simple, no-cost adaptation options such as advancement of sowing dates or the use of longer cycle varieties may be implemented to tackle the expected yield loss in southern Europe as well as to exploit possible advantages in northern regions.  相似文献   

4.
了解气候变化背景下农作物气候年型以及不同气候年型下作物的生产潜力,对实现农业的可持续发展具有重要意义。基于1961—2015年西南区域单季稻种植区316个气象台站的逐日气象资料和单季稻生产资料,利用异常度概念分析了单季稻生长季的10种气候年型,解析了不同气候年型下单季稻的气候生产潜力,并分析气候变化对单季稻生长季气候年型及生产潜力的影响。结果表明:(1)近55年来西南区域单季稻生长季正常年型发生频次最高,平均21.5次,其次是少雨年型和多雨年型。从空间分布来看,正常年型多出现在云南南部和西北部、四川攀西和四川盆地南部的部分地区,少雨和多雨年型多出现在四川盆地大部和其他省市的部分地区,高温年型多出现在四川攀西地区、云南和贵州的个别地区,低温和寡照年型的空间差异不明显。(2)1961—2015年,西南区域单季稻气候生产潜力平均为7065.6 kg/hm2。与正常年相比,多雨年型气候生产潜力偏高超过10%,少雨年型偏低超过14%,降水是影响单季稻气候生产潜力的最主要因子。(3)气候变暖对西南区域单季稻生长季气候年型变化的影响最为显著。与1961—1990年相比,1991—2015年暖年增加,冷年减少。近55年来西南各省市单季稻气候生产潜力均呈下降趋势,1990年代以来暖年的增加有利于气候生产潜力的提高,而少雨和寡照年的增加是气候生产潜力总体下降的主要原因。  相似文献   

5.
空气污染对气候变化影响与反馈的研究评述   总被引:7,自引:1,他引:6  
气候变化和空气污染都是人类面临的重要环境问题,其影响与反馈已成为空气污染和气候变化领域的研究热点. 总结了空气污染与气候变化相互作用机理,系统梳理了国内外有关空气污染对气候变化影响及反馈的研究成果,并且重点评述了黑碳和硫酸盐气溶胶辐射强迫及其气候效应、气候变化对近地面臭氧和颗粒物影响等领域的研究进展. 分析指出,现阶段尚没有一个能够综合考虑气象条件、排放源、下垫面等诸多因子对空气污染的影响机理过程模型,无法定量描述大气组分在不同气象条件作用下的演变过程等. 提出未来研究中应深化对机理机制的认识,减少模式的不确定性,加强在排放清单的编制、立体观测网的构建、互馈机理的试验、模式的集成耦合等方面的研究.   相似文献   

6.
Global demand for bio-fuels continues unabated. Rising concerns over environmental pollution and global warming have encouraged the movement to alternate fuels, the world ethanol market is projected to reach 86 billion litres this year. Bioethanol is currently produced from land-based crops such as corn and sugar cane. A continued use of these crops drives the food versus fuel debate. An alternate feed-stock which is abundant and carbohydrate-rich is necessary. The production of such a crop should be sustainable, and, reduce competition with production of food, feed, and industrial crops, and not be dependent on agricultural inputs (pesticides, fertilizer, farmable land, water). Marine biomass could meet these challenges, being an abundant and carbon neutral renewable resource with potential to reduce green house gas (GHG) emissions and the man-made impact on climate change. Here we examine the current cultivation technologies for marine biomass and the environmental and economic aspects of using brown seaweeds for bio-ethanol production.  相似文献   

7.
温室效应对气候和农业的影响   总被引:7,自引:0,他引:7  
本文综述温室效应及因氟氯碳化合物的增加使平流层臭氧减少紫外辐射增加对气候和农业的影响.介绍低层空气二次污染物臭氧增加的影响.  相似文献   

8.
If no timely measures are taken to adapt Egyptian agriculture to possible climate warming, the effects may be negative and serious. Egypt appears to be particularly vulnerable to climate change because of its dependence on the Nile River as the primary water source, its large traditional agricultural base, and its long coastline, already undergoing both intensifying development and erosion. A simulation study characterized potential yield and water use efficiency decreases on two reference crops in the main agricultural regions with possible future climatic variation, even when the beneficial effects of increased CO2 were taken into account. On-farm adaptation techniques which imply no additional cost to the agricultural system, did not compensate for the yield losses with the warmer climate or improve the crop water-use efficiency. Economic adjustments such as the improvement of the overall water-use efficiency of the agricultural system, soil drainage and conservation, land management, and crop alternatives are essential. If appropriate measures are taken, negative effects of climate change in agricultural production and other major resource sectors (water and land) may be lessened. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
碳黑大气颗粒物的环境效应   总被引:8,自引:0,他引:8  
碳黑颗粒物来自高温燃烧过程,它对可见光辐射具有最大能力的吸收作用。新近研究结果证实,碳黑大气颗粒物具有温室效应的作用,是引起地球气候变暖的重要角色。这种作用可以通过碳黑颗粒物对地球辐射平衡的直接效应和间接效应得以实现。以往人们对碳黑颗粒物这种作用的估计偏低。人们在未来减低大气温室效应的战略中,大气污染削减物质应将碳黑颗粒物包括在内。碳黑颗粒物还具有抑制对流层中臭氧形成、干扰局部地区水文循环和降低能见度的其他环境效应。  相似文献   

10.
IPCC第一工作组评估报告分析及建议   总被引:1,自引:0,他引:1       下载免费PDF全文
2021年8月6日,政府间气候变化专门委员会(IPCC)第一工作组第六次评估报告(AR6)发布,针对气候系统变化科学领域最新研究进展和成果进行了全面、系统的评估. AR6以更强有力的证据进一步确定了近百年全球气候变暖的客观事实,人类活动对气候变暖影响的信号更为清晰. 本文总结了历次IPCC评估报告,并从气候现状、未来可能的气候状态、风险评估和区域适应气候变化信息以及减缓未来气候变化4个方面对AR6进行系统梳理. 结果表明:人类活动产生的温室气体对大气、海洋、冰冻圈和生物圈的影响前所未有,引发了全球许多地区的极端天气和气候极端事件. 未来若温室气体排放没有显著减少,到2100年全球地表温度将至少升高2.1 ℃;如若人类影响得到有效改善,在最低排放情景(SSP1-1.9)中,2055年将变为负碳,到21世纪末气温开始再次下降. 减少CH4等其他污染物可以为全球气候治理争取时间,并改善空气质量. 建议中国应对气候变化应加强基础科学研究,聚焦模式开发和应用及与各工作组之间的衔接,加快短寿命气候强迫(SLCFs)与温室气体协同控制研究,强化应对气候变化政策措施的科技支撑等.   相似文献   

11.
为评估成都市2017年夏季(6-8月)开展的臭氧防治行动措施对空气质量的改善效果,采用在线监测系统对成都市环境空气中VOCs物种进行监测,对比分析VOCs污染特征、OFP(臭氧生成潜势),并利用PMF(正矩阵因子法)模型对VOCs主要来源进行解析.结果表明:2017年8月$φ$(VOCs)平均值为31.85×10-9,比2016年同期下降了32%,其中,$φ$(芳香烃)和$φ$(卤代烃)平均值下降最为明显.$φ$(VOCs)日变化呈双峰型,分别在每日09:00和23:00左右达峰值,臭氧防治行动期间$φ$(VOCs)月均小时值低于2016年同期.VOCs的OFP敏感性物种以烯烃为主,占总VOCs OFP贡献的48%.2017年8月成都市OFP为61.89×10-9,比2016年同期下降44%.VOCs源解析结果发现,2017年8月油气挥发源、有机溶剂使用源、工业源、生物质燃烧源等排放占比均有所下降,而机动车排放源和天然源的排放占比增加.研究显示,成都市2017年夏季臭氧防治行动对成都市大气VOCs排放有明显的控制效果.   相似文献   

12.
Climate change associated global warming, rise in carbon dioxide concentration and uncertainties in precipitation has profound implications on Indian agriculture. Maize (Zea mays L.), the third most important cereal crop in India, has a major role to play in country’s food security. Thus, it is important to analyze the consequence of climate change on maize productivity in major maize producing regions in India and elucidate potential adaptive strategy to minimize the adverse effects. Calibrated and validated InfoCrop-MAIZE model was used for analyzing the impacts of increase in temperature, carbon dioxide (CO2) and change in rainfall apart from HadCM3 A2a scenario for 2020, 2050 and 2080. The main insights from the analysis are threefold. First, maize yields in monsoon are projected to be adversely affected due to rise in atmospheric temperature; but increased rainfall can partly offset those loses. During winter, maize grain yield is projected to reduced with increase in temperature in two of the regions (Mid Indo-Gangetic Plains or MIGP, and Southern Plateau or SP), but in the Upper Indo-Gangetic Plain (UIGP), where relatively low temperatures prevail during winter, yield increased up to a 2.7°C rise in temperature. Variation in rainfall may not have a major impact on winter yields, as the crop is already well irrigated. Secondly, the spatio-temporal variations in projected changes in temperature and rainfall are likely to lead to differential impacts in the different regions. In particular, monsoon yield is reduced most in SP (up to 35%), winter yield is reduced most in MIGP (up to 55%), while UIGP yields are relatively unaffected. Third, developing new cultivars with growth pattern in changed climate scenarios similar to that of current varieties in present conditions could be an advantageous adaptation strategy for minimizing the vulnerability of maize production in India.  相似文献   

13.
Most prior climate change assessments for U.S. agriculture have focused on major world food crops such as wheat and maize. While useful from a national and global perspective, these results are not particularly relevant to the Northeastern U.S. agriculture economy, which is dominated by dairy milk production, and high-value horticultural crops such as apples (Malus domestica), grapes (Vitis vinifera), sweet corn (Zea mays var. rugosa), cabbage (Brassica oleracea var. capitata), and maple syrup (sugar maple, Acer saccharum). We used statistically downscaled climate projections generated by the HadCM3 atmosphere–ocean general circulation model, run with Intergovernmental Panel on Climate Change future emissions scenarios A1fi (higher) and B1 (lower), to evaluate several climate thresholds of direct relevance to agriculture in the region. A longer (frost-free) growing season could create new opportunities for farmers with enough capital to take risks on new crops (assuming a market for new crops can be developed). However, our results indicate that many crops will have yield losses associated with increased frequency of high temperature stress, inadequate winter chill period for optimum fruiting in spring, increased pressure from marginally over-wintering and/or invasive weeds, insects, or disease, or other factors. Weeds are likely to benefit more than cash crops from increasing atmospheric carbon dioxide. Projections of thermal heat index values for dairy cows indicate a substantial potential negative impact on milk production. At the higher compared to lower emissions scenario, negative climate change effects will occur sooner, and impact a larger geographic area within the region. Farmer adaptations to climate change will not be cost- or risk-free, and the impact on individual farm families and rural communities will depend on commodity produced, available capital, and timely, accurate climate projections.  相似文献   

14.
近年来有关平流层臭氧损耗影响低层大气质量的研究表明 ,在污染相对轻的地方 ,可以观测到加强的光化学反应过程 ;在污染地区 ,最终的影响与大气中存在的痕量物质间的相互作用有很大关系 ,这些通常会被人为排放带来的影响所掩盖 ;越来越多的证据表明 ,臭氧层损耗与气候变化之间的相互作用是至关重要的涉及全球变化的问题 ,是今后活跃的科学研究领域。  相似文献   

15.
我国典型钢铁工业城市夏季臭氧污染来源解析研究   总被引:2,自引:0,他引:2  
邯郸与其周边城市相比,臭氧(O3)污染最为严重.基于观测数据分析夏季邯郸O3浓度的时空特征,结果显示:观测期间邯郸O3超标天数比率为86.7%,各区县O3浓度分布存在差异,高温、低湿和偏南贴地气团传输是此次O3连续污染的主要成因.继而,以CAMx-OSAT模型模拟方法进行O3来源解析,溯源分析显示:邯郸O3污染具有明显...  相似文献   

16.
Desertification, climate variability and food security are closely linked through drought, land cover changes, and climate and biological feedbacks. In Ghana, only few studies have documented these linkages. To establish this link the study provides historical and predicted climatic changes for two drought sensitive agro-ecological zones in Ghana and further determines how these changes have influenced crop production within the two zones. This objective was attained via Markov chain and Fuzzy modelling. Results from the Markov chain model point to the fact that the Guinea savanna agro-ecological zone has experienced delayed rains from 1960 to 2008 while the Sudan savanna agro-ecological zone had slightly earlier rains for the same period. Results of Fuzzy Modelling indicate that very suitable and moderately suitable croplands for millet and sorghum production are evenly distributed within the two agro-ecological zones. For Ghana to adapt to climate change and thereby achieve food security, it is important to pursue strategies such as expansion of irrigated agricultural areas, improvement of crop water productivity in rain-fed agriculture, crop improvement and specialisation, and improvement in indigenous technology. It is also important to encourage farmers in the Sudan and Guinea Savanna zones to focus on the production of cereals and legumes (e.g. sorghum, millet and soybeans) as the edaphic and climatic factors favour these crops and will give the farmers a competitive advantage. It may be necessary to consider the development of the study area as the main production and supply source of selected cereals and legumes for the entire country in order to free lands in other regions for the production of crops highly suitable for those regions on the basis of their edaphic and climatic conditions.  相似文献   

17.
Air quality and related health effects are not only affected by policies directly addressed at air pollution but also by other environmental strategies such as climate mitigation. This study addresses how different climate policy pathways indirectly bear upon air pollution in terms of improved human health in Europe. To this end, we put in perspective mitigation costs and monetised health benefits of reducing PM2.5 (particles less than 2.5 μm in diameter) and ozone concentrations.Air quality in Europe and related health impacts were assessed using a comprehensive modelling chain, based on global and regional climate and chemistry-transport models together with a health impact assessment tool. This allows capturing both the impact of climate policy on emissions of air pollutants and the geophysical impact of climate change on air quality.Results are presented for projections at the 2050 horizon, for a set of consistent air pollution and climate policy scenarios, combined with population data from the UN's World Population Prospects, and are expressed in terms of morbidity and mortality impacts of PM2.5 and ozone pollution and their monetised damage equivalent.The analysis shows that enforcement of current European air quality policies would effectively reduce health impacts from PM2.5 in Europe even in the absence of climate policies (life years lost from the exposure to PM2.5 decrease by 78% between 2005 and 2050 in the reference scenario), while impacts for ozone depend on the ambition level of international climate policies. A move towards stringent climate policies on a global scale, in addition to limiting global warming, creates co-benefits in terms of reduced health impacts (68% decrease in life years lost from the exposure to PM2.5 and 85% decrease in premature deaths from ozone in 2050 in the mitigation scenario relative to the reference scenario) and air pollution cost savings (77%) in Europe. These co-benefits are found to offset at least 85% of the additional cost of climate policy in this region.  相似文献   

18.
陇东黄土高原农业物候对全球气候变化的响应   总被引:26,自引:0,他引:26  
通过对多年来陇东黄土高原董志塬主要农作物冬小麦和主要果树苹果、梨发育物候和气候变化的同步观测,分析了陇东黄土高原农作物发育物候对气候变化的生态响应。分析发现,董志塬近35年来年平均气温呈显著增加的趋势,且以冬季和春季增温为主(冬小麦越冬期增温线性趋势达0.0672℃a/),和全球气候变暖趋势基本一致。增温线性趋势达0.0507℃a/,远高于全国20世纪60年代以来平均增温幅度,也高于陇东黄土高原近35年平均增温幅度(0.0348℃a/),是陇东黄土高原增温中心地带。气候变暖对董志塬冬小麦和果树的生态影响主要体现在春季发育期普遍提前,冬小麦越冬期显著缩短(缩短的线性趋势达0.674d a/),而冬小麦和果树春季各发育期间隔并未出现缩短的趋势。而且由于当地种植冬小麦品种为强冬性、长日照型品种,发育期提前导致日长缩短,对发育有一定抑制作用,抵消了一部分增温的影响,因此果树春季各发育期提前的线性趋势比冬小麦明显。就果树而言,梨树春季发育期提前的线性趋势又比苹果树明显。结论认为气候变化对农业的影响有利有弊,农业管理部门应根据当地气候变化特征,及时调整种植结构,优化种植模式,趋利避害,充分挖掘气候资源潜力,提高农业经济效益。  相似文献   

19.
稻麦作物净初级生产力模型研究:模型检验与情景预测   总被引:5,自引:0,他引:5  
利用我国若干代表性区域98组稻麦作物生产力的试验数据,对所建立的稻麦作物净初级生产力模型进行了检验.结果表明,该模型能根据常规的气象和土壤资料、化肥施用量等数据资料较好地模拟我国主要区域稻麦作物的净初级生产力.模拟值(y)与观测值(x)的线性关系为:y=1.05p-16.8(r2=0.771,p<0.001,n=98).对南京地区的情景预测结果表明:大气CO2浓度升高促进稻麦作物的固碳能力;气温升高会降低水稻和小麦的碳固定,但对小麦的影响要小于水稻;在当前情景及未来情景(CO2浓度为540μmol·mol-1,温度增加1~4℃)下,氮肥施用对小麦碳固定的促进作用大于水稻,氮肥施用量高于150 kg·hm-2时对2种作物的碳固定没有显著的促进作用,甚至降低水稻的净初级生产力.  相似文献   

20.
Sub-Saharan Africa is large and diverse with regions of food insecurity and high vulnerability to climate change. This project quantifies carbon stocks and fluxes in the humid forest zone of Ghana, as a part of an assessment in West Africa. The General Ensemble biogeochemical Modeling System (GEMS) was used to simulate the responses of natural and managed systems to projected scenarios of changes in climate, land use and cover, and nitrogen fertilization in the Assin district of Ghana. Model inputs included historical land use and cover data, historical climate records and projected climate changes, and national management inventories. Our results show that deforestation for crop production led to a loss of soil organic carbon (SOC) by 33% from 1900 to 2000. The results also show that the trend of carbon emissions from cropland in the 20th century will continue through the 21st century and will be increased under the projected warming and drying scenarios. Nitrogen (N) fertilization in agricultural systems could offset SOC loss by 6% with 30 kg N ha−1 year−1 and by 11% with 60 kg N ha−1 year−1. To increase N fertilizer input would be one of the vital adaptive measures to ensure food security and maintain agricultural sustainability through the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号