首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
This is the first report showing reduction of particle matter and PAHs from incense burning by addition of oyster shell. Worshiping ancestors and gods by burning incense sticks and joss paper is a very important tradition in many Asian regions. More than 45 % of families in Taiwan burn incense twice a day. Unlike joss paper burning, most of the incense burning occurs indoors, thus creating a risk for human health. Previous reports have indeed evidenced toxicity of incense, notably due to particulate matter and polycyclic aromatic hydrocarbons (PAHs). However, there are few methods to reduce particle matter and PAHs from incense burning. We hypothesize that oyster shell may be used to reduce incense fumes toxicity. Indeed a large amount of unused oyster shell is discarded due to increasing seafood consumption. Here, two types of incense were made in the laboratory, and then 5–30 % of oyster shells were added to the incense to study the reduction of particle matter and PAHs. Results show that reduction of particle matter and PAH emission increased with oyster shell addition. The reduction of emission factors is ?35 % for mean particle matter, ?21 % for particle-phase PAHs, and ?37 % for benzo[a]pyrene equivalent concentration (BaPeq), using 30 % oyster shell additive. The addition of 10 % oyster shell reduces the burning time by 8.3 min, increases the burning rate by 3.4 mg/min, and reduces particle matter by 6.4 mg/g incense, particle-phase PAHs by 0.67 μg/g incense, and BaPeq by 0.23 μg/g incense. The reductions of particle matter, particle-phase PAHs, and BaPeq correspond to about 640 metric tons, 67, and 23 kg, respectively, per year. Our findings will help to produce safer and cleaner incense.  相似文献   

2.
In 2004, airborne particulate matter (PM) was collected for several aerosol episodes occurring in the southern region of Taiwan. The particulate samples were taken using both a MOUDI (Micro-orifice Uniform Deposit Impactor) and a nano-MOUDI sampler. These particulate samples were analyzed for major water-soluble ionic species with an emphasis to characterize the mass concentrations and distributions of these ions in the ambient ultrafine (PM0.1, diameter <0.1 μm) and nano mode (PMnano, diameter <0.056 μm) particles. Particles collected at the sampling site (the Da-Liao station) on the whole exhibited a typical tri-modal size distribution on mass concentration. The mass concentration ratios of PMnano/PM2.5, PM0.1/PM2.5, and PM1/PM2.5 on average were 1.8, 2.9, and 71.0%, respectively. The peak mass concentration appeared in the submicron particle mode (0.1 μm < diameter <1.0 μm). Mass fractions (percentages) of the three major water-soluble ions (nitrate, sulfate, and ammonium) as a group in PMnano, PM0.1, PM1, and PM2.5 were 18.4, 21.7, 50.0, and 50.7%, respectively. Overall, results from this study supported the notion that secondary aerosols played a significant role in the formation of ambient submicron particulates (PM0.1−1). Particles smaller than 0.1 μm were essentially basic, whereas those greater than 2.5 μm were neutral or slightly acidic. The neutralization ratio (NR) was close to unity for airborne particles with diameters ranging from 0.18 to 1 μm. The NRs of these airborne particles were found strongly correlated with their sizes, at least for samples taken during the aerosol episodes under study. Insofar as this study is exploratory in nature, as only a small number of particulate samples were used, there appears to be a need for further research into the chemical composition, source contribution, and formation of the nano and ultrafine mode airborne particulates.  相似文献   

3.

The Angouran Mine, located in northwest Iran, is the largest Zn–Pb producer in the Middle East. This study was designed to investigate the distribution, geochemistry, and mineralogy of the aerosols in the mining area and to assess their likely health impacts on the local residents. For this purpose, 36 aerosol samples were collected from 2014 to 2015 at nine sites located in mine district and upwind and downwind directions. The concentration of potentially toxic elements in the aerosols was determined using AAS instrument. Size, morphology, and mineralogy of the particles were studied using SEM and EDX spectra. The results indicate that the amount of total suspended particles in upwind, mine district, and downwind sites is 95.5, 463.4 and 287.5 µg/m3, respectively. The concentrations of PM2.5 in the three locations are 8.9, 134.7, and 51.8 µg/m3, whereas the PM10 contents are 2.9, 74.4, and 15.5 µg/m3, respectively. These observations point to the impact of mining activities on the concentration of aerosols in the local atmosphere. The values of air quality index also show the probable effects of the mining activities on the health of the local populations, especially for allergic peoples. The average concentration of Zn in the samples collected from the mining district (290 µg/kg) is much higher than its value in the upwind sites (27 µg/kg). The highest concentration of As (70 µg/kg), Cd (10 µg/kg), and Pb (3 µg/kg) is in downwind sites, which shows the negative impact of mining activities on the local air quality. Temporally, the highest concentration of the studied elements is recorded in spring season, especially for PM2.5 collected in downwind stations. Based on the results of SEM and EDX spectra, three groups of minerals, i.e., carbonates, silicates, and sulfides, are present in the aerosol particles, confirming the local source for the aerosols. SEM analyses showed that the aerosol particles with dissimilar chemical composition have different morphologies such as irregular, rounded, elongated, and angular. On the basis of the results, the mining activities in the Angouran Zn–Pb Mine may have various short- and long-term consequences on the public health, especially due to high amount of the finer particles (PM2.5) and the higher concentration of the potentially toxic elements in PM2.5 which can penetrate into the lungs.

  相似文献   

4.
Abstract

Cooking of foods and the burning of biomass and fossil fuels in stoves are the main sources of cooking fumes, with carbon black and polycyclic aromatic hydrocarbons as main components. The toxicity of carbon black and polycyclic aromatic hydrocarbons has been well studied individually, but the combined toxicity is much less understood. Carbon black can adsorb benzo(a)pyrene to form a complex which displays an altered physical form which in this study has been constructed to simulate particles in the cooking fumes and explore the combined toxic effect on rat alveolar macrophages. The complex-induced cell apoptosis and blocked cell autophagy flux compared with both individually. The mechanism of toxicity may be by intracellular reactive oxygen species generation, impairing the mitochondrial membrane potential and activating apoptosis signaling pathways.  相似文献   

5.
Environmental Chemistry Letters - Polycyclic aromatic hydrocarbons are toxic pollutants which persist in the environment. Extraction of polycyclic aromatic hydrocarbons requires large volumes of...  相似文献   

6.
An assessment of air quality of Belgrade, Serbia, was performed by determining the trace element content in airborne daily PM10 and PM2.5 samples collected from a central urban area. The ambient concentrations of Zn were the highest in PM2.5 (1,998.0 ng m−3). Multivariate receptor modelling (principal component analysis and cluster analysis) has been applied to determine the contribution of different sources of specific metallic components in airborne particles. The obtained results showed that vehicle traffic and fossil fuel combustion in stationary objects were the main sources of trace metals in Belgrade urban aerosols.  相似文献   

7.
Daily PM2.5, PM2.5–10 and TSP have been collected by Universal and PS‐1 sampler simultaneously at a site within Taichung between February and March 1999. The filters were analyzed by atomic absorption spectrophotometry for the elemental analysis of Ca, Fe, Mn, Pb, Cu, Zn and Cr. In general, the concentration of these metallic elements are higher in fine particles than in coarse particles. On average, PM10 accounted for 67% of the TSP at daytime, while at nighttime PM10 accounted for only 44% of the TSP. For PM2.5, PM2.5–10 and TSP concentrations, there were no significant differences between day and night period. The averaged concentrations of metallic elements in PM2.5 at daytime were all higher than that at nighttime. Ca, Fe and Zn have large and variable PM2.5 concentrations at both daytime and nighttime. For the daytime Zn and Pb account for the largest portion of the heavy metal elements. For the nighttime, Zn and Cr make the largest portion of the heavy metal elements. The concentrations of Mn were higher on fine particulates. The trace metals Cu and Cr in Taichung are probably due to particulates emitted by Taichung Fire Power Plants transported into the sampling area by the prevailing northwesterly wind.  相似文献   

8.
以东莞市5个镇区为研究对象,采集电镀企业周边大气样品,分析了样品中重金属(包括As、Co、Cd、Cr、Cu、Mn、Ni、Pb、Sb、V、Zn和Hg)的含量分布,使用富集因子(enrich factor)、地累积指数(index of geoaccumulation)、Hakanson法和美国国家环境保护局(US EPA)的人体暴露健康风险评价模型,对PM_(2.5)、PM_(10)、总悬浮颗粒物(TSP)中重金属进行人体健康风险评价。结果表明,PM_(2.5)、PM_(10)和TSP中As、Cd和Cr平均浓度皆超标。Cr、Ni和V元素在3种颗粒物中非富集,主要为自然源;As、Co、Cu、Pb和Zn,可能来源于自然源和叠加的工业污染。Cd、Hg和Sb浓度受人为污染影响严重。Cd、Sb、Cu、Zn、Pb为生物可利用元素(K>0.6),在环境中的可迁移性高且易于被生物体和人体吸收。Mn元素的非致癌风险值较其他重金属要高1~4个数量级,且儿童的非致癌暴露风险值HQ均高于成人的。3种颗粒物中重金属元素通过呼吸吸入途径产生的非致癌风险HI值均高于人体可接受的上限1.0,其主要贡献来源于Mn的影响,研究区非致癌风险较为严重。除PM_(10)中Co元素和TSP中Co、Cr的成人致癌风险CR值大于10-4之外,其余大部分重金属元素通过呼吸途径产生的致癌风险CR值均在可接受范围之内,此外,3种颗粒物中的成人的致癌暴露风险值CRT均高于儿童的CRT值,并且除了PM_(2.5)中儿童的重金属致癌暴露风险CRT值(4.70E-05)低于人体可接受范围的上限(10-4),其余CRT值均高于10-4,致癌风险较为严重。  相似文献   

9.
To understand the size-resolved aerosol ionic composition and the factors influencing secondary aerosol formation in the upper boundary layer in South Central China, size-segregated aerosol samples were collected using a micro-orifice uniform deposit irnpactor (MOUDI) in spring 2009 at the summit of Mount Heng (1269 m asl), followed by subsequent laboratory analyses of 13 inorganic and organic water-soluble ions. During non- dust-storm periods, the average PM1.8 concentration was 41.8 μg·m^-3, contributing to 55% of the PM10. Sulfates, nitrates, and ammonium, the dominant ions in the fine particles, amounted to 46.8% of the PM1.8. Compared with Mount Tai in the North China Plain, the concentrations of both fine and coarse particles and the ions contained therein were substantially lower. When the air masses from Southeast Asia prevailed, intensive biomass burning there led to elevated concentrations of sulfates, nitrates, ammonium, potassium, and chloride in the fine particles at Mount Heng. The air masses originating from the north Gobi brought heavy dust storms that resulted in the remarkable production of sulfates, ammonium, methane sulfonic acid, and oxalates in the coarse particles. Generally, the sulfates were primarily produced in the form of (NH4)2SO4 in the droplet mode via heterogeneous aqueous reactions. Only approximately one-third of the nitrates were distributed in the fine mode, and high humidity facilitated the secondary formation of fine nitrates. The heterogeneous formation of coarse nitrates and ammonium on dry alkaline dust surfaces was found to be less efficient than that on the coarse particles during non-dust-storm periods.  相似文献   

10.
Selected persistent organic pollutants – polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides – were determined in sediments, soils, and crops from the Asopos River area, Greece. The river has been receiving industrial effluents for the last 40 years and has been recently found to be polluted with metals. Sediments were collected in the dry (May) and wet (February) season. Agricultural soils and cultivated crops were sampled from adjacent fields. Polychlorinated biphenyls were below the limit of detection in all samples. In one tomato and two soil samples, DDT and DDE were found. Polycyclic aromatic hydrocarbons were observed in 5% of the sediments and in concentrations ranging from 4 to 57 μg kg?1 dry weight, quite below sediment quality guidelines. Diagnostic ratios of polycyclic aromatic hydrocarbons indicated a strong influence of petrogenic point discharges. In the sediments, silicate minerals dominate over carbonates and the organic carbon content ranges from 0.4% to 3.5%, more than 70% being of natural origin. Compared to other rivers worldwide, the Asopos River was found to be not contaminated with persistent organic pollutants. Point loadings of organic pollutants were evident but continuous discharge is not occurring throughout the river basin.  相似文献   

11.
Twenty trace elements in fine particulate matters (i.e., PM2.5) at urban Chengdu, a southwest megacity of China, were determined to study the characteristics, sources and human health risk of particulate toxic heavy metals. This work mainly focused on eight toxic heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The average concentration of PM2.5 was 165.1 ± 84.7 µg m?3 during the study period, significantly exceeding the National Ambient Air Quality Standard (35 µg m?3 in annual average). The particulate heavy metal pollution was very serious in which Cd and As concentrations in PM2.5 significantly surpassed the WHO standard. The enrichment factor values of heavy metals were typically higher than 10, suggesting that they were mainly influenced by anthropogenic sources. More specifically, the Cr, Mn and Ni were slightly enriched, Cu was highly enriched, while As, Cd, Pb and Zn were severely enriched. The results of correlation analysis showed that Cd may come from metallurgy and mechanical manufacturing emissions, and the other metals were predominately influenced by traffic emissions and coal combustion. The results of health risk assessment indicated that As, Mn and Cd would pose a significant non-carcinogenic health risk to both children and adults, while Cr would cause carcinogenic risk. Other toxic heavy metals were within a safe level.  相似文献   

12.
Ambient PM2.5 samples were collected at four sites in Xiamen, including Gulangyu (GLY), Hongwen (HW), Huli (HL) and Jimei (JM) during January, April, July and October 2013. Local source samples were obtained from coal burning power plants, industries, motor vehicles, biomass burning, fugitive dust, and sea salt for the source apportionment studies. The highest value of PM2.5 mass concentration and species related to human activities (SO4 2–, NO3 , Pb, Ni, V, Cu, Cd, organic carbon (OC) and elemental carbon (EC)) were found in the ambient samples from HL, and the highest and lowest loadings of PM2.5 and its components occurred in winter and summer, respectively. The reconstructed mass balance indicated that ambient PM2.5 consisted of 24% OM (organic matter), 23% sulfate, 14% nitrate, 9% ammonium, 9% geological material, 6% sea salt, 5% EC and 10% others. For the source profiles, the dominant components were OC for coal burning, motor vehicle, biomass burning and sea salt; SO4 2– for industry; and crustal elements for fugitive dust. Source contributions were calculated using a chemical mass balance (CMB) model based on ambient PM2.5 concentrations and the source profiles. GLY was characterized by high contributions from secondary sulfate and cooking, while HL and JM were most strongly affected by motor vehicle emissions, and biomass burning and fugitive dust, respectively. The CMB results indicated that PM2.5 from Xiamen is composed of 27.4% secondary inorganic components, 20.8% motor vehicle emissions, 11.7% fugitive dust, 9.9% sea salt, 9.3% coal burning, 5.0% biomass burning, 3.1% industry and 6.8% others.
  相似文献   

13.
Fine particulate matter (PM2.5) levels, carbon dioxide (CO2) levels and particle-number concentrations (PNC) were monitored in train carriages on seven routes of the mass transit railway in Hong Kong between March and May 2014, using real-time monitoring instruments. The 8-h average PM2.5 levels in carriages on the seven routes ranged from 24.1 to 49.8 µg/m3, higher than levels in Finland and similar to those in New York, and in most cases exceeding the standard set by the World Health Organisation (25 µg/m3). The CO2 concentration ranged from 714 to 1801 ppm on four of the routes, generally exceeding indoor air quality guidelines (1000 ppm over 8 h) and reaching levels as high as those in Beijing. PNC ranged from 1506 to 11,570 particles/cm3, lower than readings in Sydney and higher than readings in Taipei. Correlation analysis indicated that the number of passengers in a given carriage did not affect the PM2.5 concentration or PNC in the carriage. However, a significant positive correlation (p < 0.001, R 2 = 0.834) was observed between passenger numbers and CO2 levels, with each passenger contributing approximately 7.7–9.8 ppm of CO2. The real-time measurements of PM2.5 and PNC varied considerably, rising when carriage doors opened on arrival at a station and when passengers inside the carriage were more active. This suggests that air pollutants outside the train and passenger movements may contribute to PM2.5 levels and PNC. Assessment of the risk associated with PM2.5 exposure revealed that children are most severely affected by PM2.5 pollution, followed in order by juveniles, adults and the elderly. In addition, females were found to be more vulnerable to PM2.5 pollution than males (p < 0.001), and different subway lines were associated with different levels of risk.  相似文献   

14.
The objective of this study was to determine the black carbon concentration in Beijing in 2003. The aerosol properties were measured using an Aethalometer and a tapered element oscillating microbalance (TEOM) on the roof of the Physics Building of Peking University (39.99° N, 116.31° E) from July to August 2003 and from November 2003 to January 2004. The average black carbon (BC) concentrations in the summer and winter were 8.80 and 11.4 μg/m3, respectively. During winter, two different cyclone cut offs were installed at the inlet of an aethalometer. The BC mass concentration in TSP, PM10, and PM2.5 were obtained. The results indicated that in winter aerosol, 90% of BC exited in PM10 and 82.6% of BC exited in PM2.5. The BC in PM10 accounted for 5.11% of the PM10 mass.  相似文献   

15.
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5–10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4–26.6 and 0.6–7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680–26,100 mg kg?1) compared with the coarse fraction (1210–22,000 mg kg?1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.  相似文献   

16.
Aerosol samples of particulate and chemical species for PM10 (particulate matter with aerodynamic diameters less than 10 μm) collected by Universal sampler were studied from June to August 1998 in the suburban area of central Taiwan. The ratios of PM2.5/PM2.5–10 displayed that the fine particles (particle size < 2.5 μm) are prevailing in the suburban site. Ion Chromatography was used to analyze for the water‐soluble ions: sulphate and nitrate in the Universal samples. Also, the collected samples were analyzed by atomic absorption spectrophotometry for the elemental analysis of Ca, Fe, Pb, Cu and Cr. The results indicated that the crustal elements (Ca and Fe) and resuspended matters were dominated in the coarse particulate mode while the anthropogenic elements (Cr, Pb, Cu) and sulphate components are mainly in the fine particle fraction. The results also showed that the sulphate and nitrate make the largest portion of the chemical species collected by Universal sampler (PMio). The concentrations of heavy metals in THU are generally high, owing to the higher motor vehicle and industrial density nearby. The degree of pollution from this source differs from day to day, depending on the motor vehicle density.  相似文献   

17.
Semipermeable membrane devices (SPMDs) are nowadays used as passive samplers of organic pollutants. The knowledge of the sampling rate values (RS) of each substance trapped on membranes is necessary to calculate their average concentration. Here we calculate RS values for 16 polycyclic aromatic hydrocarbons using the comparison of active sampling method results and the amounts sequestered by SPMDs at varying exposure times.Selected article from the Regional Symposium on Chemistry and Environment, Krusevac, Serbia, June 2003, organized by Dr. Branimir Jovancicevic.  相似文献   

18.

Diesel engine railway traffic causes atmosphere pollution due to the exhaust emission which may be harmful to the passengers as well as workers. In this study, the air quality and PM10 concentrations were evaluated around a railway station in Northeast India where trains are operated with diesel engines. The gaseous pollutant (e.g. SO2, NO2, and NH3) was collected and measured by using ultraviolet–visible spectroscopy. The advanced level characterizations of the PM10 samples were carried out by using ion chromatography, Fourier-transform infrared, X-ray diffraction, inductively coupled plasma optical emission spectrometry , X-ray photoelectron spectroscopy, field-emission scanning electron microscopy with energy-dispersive spectroscopy, and high-resolution transmission electron microscopy with energy-dispersive spectroscopy techniques to know their possible environmental contaminants. High-performance liquid chromatography technique was used to determine the concentration of polycyclic aromatic hydrocarbons to estimate the possible atmospheric pollution level caused by the rail traffic in the enclosure. The average PM10 concentration was found to be 262.11 µg m−3 (maximum 24 hour) which indicates poor air quality (AQI category) around the rail traffic. The statistical and air mass trajectory analysis was also done to know their mutual correlation and source apportionment. This study will modify traditional studies where only models are used to simulate the origins.

  相似文献   

19.

The ambient air particulates pollutants of total suspended particulates (TSP) and PM2.5 were collected by using PS-1 and Wilbur PM2.5 sampler, simultaneously during the year of 2015–2017 at a photoelectric factory in Science Park of central Taiwan. And those of the ambient air atmospheric metallic elements (Cr, Mn, Ni, Cu, Zn, Pb) concentrations which attached on the TSP and PM2.5 were analyzed by using inductively coupled plasma optical emission spectrometer. In addition, identifying anthropogenic and natural pollutants sources were conducted by using the enrichment factor (EF) and principal component analysis (PCA) methods. The results indicated that the average TSP and PM2.5 concentrations were ranked highest in winter season, while summer season was ranked lowest during the year of 2015–2016. In addition, the average highest metallic element concentrations were occurred in winter season for both TSP and PM2.5 during the year of 2015–2016, while the average lowest metallic elements concentrations in TSP and PM2.5 were also occurred in winter season during the year of 2016–2017. Moreover, the EF analysis results showed that the metallic element Zn came from anthropogenic emission source. As for metallic element Mn, the results showed that metallic element Mn was mainly attributed to natural emission in this study. Finally, the PCA results showed that metallic elements Cr, Zn and Pb were the dominant emissions metallic elements in this study. As for PM2.5, the results showed that the metallic elements Cr, Cu and Pb were the dominant emissions metallic elements at this HPB sampling site.

  相似文献   

20.
In this study, we collected particles with aerodynamic diameter ?2.5 μm (PM2.5) from three different public indoor places (a supermarket, a commercial office, and a university dining hall) in Jinan, a medium-sized city located in northern China. Water-soluble inorganic ions of PM2.5 and particle size distributions were also measured. Both indoor and outdoor PM2.5 levels (102.3–143.8 μg·m?3 and 160.2–301.3 μg·m?3, respectively) were substantially higher than the value recommended by the World Health Organization (25 μg·m?3), and outdoor sources were found to be the major contributors to indoor pollutants. Diurnal particle number size distributions were different, while the maximum volume concentrations all appeared to be approximately 300 nm in the three indoor locations. Concentrations of indoor and outdoor PM2.5 were shown to exhibit the same variation trends for the supermarket and dining hall. For the office, PM2.5 concentrations during nighttime were observed to decrease sharply. Among others, SO 4 2? , NH 4 + and NO 3 ? were found to be the dominant water-soluble ions of both indoor and outdoor particles. Concentrations of NO 3 ? in the supermarket and office during the daytime were observed to decrease sharply, which might be attributed to the fact that the indoor temperature was much higher than the outdoor temperature. In addition, domestic activities such as cleaning, water usage, cooking, and smoking also played roles in degraded indoor air quality. However, the results obtained here might be negatively impacted by the small number of samples and short sampling durations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号