首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于2021年6~8月新乡市市委党校站点观测的挥发性有机物(VOCs)、常规空气污染物和气象参数,采用基于观测的模型(OBM)对臭氧(O3)超标日的O3敏感性和前体物的管控策略进行了研究.结果发现,O3超标日呈现高温、低湿和低压的气象特征.在臭氧超标日,O3及其前体物的浓度均有上升.臭氧超标日的VOCs最高浓度组分为含氧挥发性有机物(OVOCs)和烷烃,臭氧生成潜势(OFP)和·OH反应性最大的VOCs组分为OVOCs.通过相对增量反应性(RIR)分析,新乡6月O3超标日臭氧生成处于VOCs控制区,7月和8月处于VOCs和氮氧化物(NOx)协同控制区,臭氧生成对烯烃和OVOCs最为敏感.6月各前体物的RIR值在一天中会发生变化,但始终保持为VOCs控制区;7月和8月在上午为VOCs控制区,中午为协同控制区,下午分别为协同控制区和NOx控制区.通过模拟不同前体物削减情景,结果表明削减VOCs始终有利于管控臭氧,而削减NOx  相似文献   

2.
张蕊  孙雪松  王裕  王飞  罗志云 《环境科学》2023,44(4):1954-1961
为深入了解臭氧(O3)污染高发季节大气挥发性有机物(VOCs)对O3生成的影响,基于北京市2019年夏季VOCs和O3高时间分辨率在线监测数据,开展VOCs变化规律、组成特征和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(25.12±10.11)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的40.41%,其次是含氧有机物(OVOCs)和烯/炔烃,分别占总VOCs的25.28%和12.90%. VOCs体积分数日变化呈双峰型,早高峰出现在06:00~08:00,烯/炔烃占比明显增加,表明机动车排放对VOCs贡献显著,而午后VOCs体积分数降低,期间OVOCs占比呈现上升趋势,下午的光化学反应和气象要素对VOCs体积分数和组成影响较大.北京市城区夏季OFP为154.64μg·m-3,贡献率较高的组分是芳香烃、 OVOCs和烯/炔烃,正己醛、乙烯和间/对-二甲苯等是关键活性物种,削减机动车、溶剂使用和餐饮源排放是北京市城区夏季控制O3  相似文献   

3.
为探究近地层大气日间VOCs(挥发性有机物)垂直分布特征以及对臭氧(O3)生成的影响,2021年9月,在深圳市气象梯度塔的11个垂直梯度上开展了6轮VOCs离线罐采样,并应用气相色谱质谱联用仪对102种组分进行定量分析.结果表明,从地面(0 m)到高空(345 m)VOCs总体污染水平相近,近地层大气垂直混合较为均匀;但烯烃浓度随高度增加下降明显,主要受人为源排放的乙烯变化主导;高反应性的OVOCs(含氧挥发性有机物)在较高垂直梯度上(240~345 m)增长明显,可能是导致O3在高空浓度显著大于地面的原因之一.各垂直梯度上的臭氧生成潜势(OFP)占比排序均为:OVOCs>芳香烃>烷烃>烯烃>卤代烃>炔烃,乙酸乙酯、乙醛和甲苯是促进O3生成的优势物种.日变化方面,大多数情况下不同高度的总挥发性有机物(TVOCs)浓度均在9:00最高,推测主要受早高峰时段交通尾气排放影响;随着光化学反应的进行,OVOCs浓度在13:00达到最大,推动O3浓度于午间达到峰值.X/E(间,对...  相似文献   

4.
为了解黄河三角洲区域细颗粒物(PM2.5)和臭氧(O3)大气复合污染特征和成因,本文利用2021年和2022年夏秋季黄河三角洲中心城市东营市、滨州市的挥发性有机物(VOCs)连续观测数据及常规污染物数据,识别对O3和二次有机气溶胶(SOA)生成有显著贡献的VOCs物种并对VOCs进行来源解析,同时利用基于观测的化学盒子模型探讨O3的生成敏感性.结果表明:(1)黄河三角洲地区PM2.5和O3浓度“双高”的大气复合污染主要出现在秋季,夏季东营市和滨州市首要污染物均为O3,距离入海口越远的站点O3超标天占比越高;秋季东营市和滨州市首要污染物均为PM2.5,且超标情况相近.(2)烯烃和含氧挥发性有机物(OVOCs)对臭氧生成潜势(OFP)的贡献大,优势物种为乙醛;芳香烃对SOA生成潜势(SOAFP)的贡献大,优势物种为1,2,3-三甲苯.(3)东营市夏秋季O3生成均处于VOCs...  相似文献   

5.
王帅  王秀艳  杨文  王雨燕  白瑾丰  程颖 《环境科学》2022,43(3):1277-1285
近年来,我国城市的臭氧(O3)污染问题日益突出.挥发性有机物(VOCs)是O3生成的重要前体物,因此,了解VOCs主要特征以及来源对控制O3污染具有重要意义.于2019年5~9月在淄博市开展了在线VOCs观测,共计监测56个物种.观测期间,O3超标率为67.8%,ρ(VOCs)平均值为140.71μg·m-3,O3超标日的VOCs浓度为非超标日的1.04倍.从VOCs组分结构上看,浓度从高到低依次为:芳香烃>烷烃>烯烃>炔烃.其中1,3,5-三甲苯、邻-乙基甲苯、 1-丁烯和正己烷为超标日和非超标日排放较高的物种.臭氧生成潜势(OFP)中芳香烃和烯烃贡献较大.由PMF源解析结果得出,该城区VOCs来源主要包括机动车源、固定燃烧源、溶剂使用源、工艺过程源和天然植物源,其中机动车源为该城区最主要的VOCs来源.此外,O3超标日的机动车源占比为32.3%,固定燃烧源占比为24.2%,相比于非超标日分别升高了3.3%和6.9...  相似文献   

6.
孙雪松  张蕊  王裕  聂滕 《环境科学》2023,44(2):691-698
为深入了解挥发性有机物(VOCs)对臭氧(O3)污染的影响,基于北京市2019年秋季VOCs和O3高时间分辨率在线监测数据,开展O3污染情况下VOCs浓度水平、组成变化和臭氧生成潜势(OFP)研究.结果表明,大气φ(VOCs)平均值为(22.22±10.10)×10-9,其中,烷烃是体积分数最大的组分,占总VOCs的55.65%,其次是含氧有机物(OVOCs)和烯烃,分别占总VOCs的16.23%和8.13%.观测期间,北京市城区O3共出现3次污染过程,O3污染日和清洁日φ(VOCs)平均值分别为(26.22±12.52)×10-9和(16.37±7.19)×10-9,污染日VOCs体积分数比清洁日高60.17%.臭氧生成潜势(OFP)分析结果显示,污染日OFP为113.63μg·m-3,比清洁日增加56.55%,OVOCs和芳香烃对OFP的贡献率分别增加6.51%和1.55%,而烯烃的贡献...  相似文献   

7.
由于挥发性有机物(VOCs)是O3生成的关键前体物,因此了解VOCs的污染特征以及主要来源对控制O3污染具有重要的意义.本研究于2019年9~10月在深圳市开展了在线VOCs观测,共计监测104个物种.观测期间,臭氧超标率达17.8%.TVOCs总浓度为38.9×10-9,污染日浓度明显高于非污染日.从大类物种来看,浓度从高到低依次为烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈,臭氧生成潜势(OFP)中芳香烃、OVOCs以及烯烃贡献较大.由PMF源解析模型分析结果可知,VOCs主要来源包括生物质燃烧、汽油挥发、机动车尾气、工业过程以及溶剂使用等,而其中对OFP贡献较大的排放源为溶剂使用(45.8%)、机动车尾气(27.3%).臭氧污染日发生时,清晨低风速可能导致了机动车尾气与汽油挥发源在交通早高峰快速积累,而当日高温亦会加快汽油源与溶剂源组分挥发并促进光化学反应.  相似文献   

8.
基于2020年6~8月运城市区VOCs、 O3和NO2的在线监测数据,分析了运城市区夏季VOCs的污染特征,同时使用正交矩阵因子分解法(PMF)确定了其主要排放源,并通过最大增量反应活性法(MIR)和气溶胶生成系数法(FAC)对VOCs的化学反应活性进行了评估.结果表明,运城市区夏季凌晨和傍晚时段受VOCs和NO2污染较为严重,VOCs日变化峰值分别出现在08:00和20:00,峰值的出现主要受交通早晚高峰的影响;6~8月的ρ(VOCs)为50.52μg·m-3,质量分数最高的物种为烷烃(39.39%)和含氧挥发性有机物(OVOCs, 34.63%).利用PMF模型共确定了5个VOCs排放源,其中贡献率最大的为机动车尾气排放源(33.10%),其次为工业排放源(29.46%)、天然气及煤燃烧源(17.31%)、溶剂使用源(11.94%)和植物排放源(8.19%),控制机动车尾气排放源是缓解运城市夏季VOCs污染的关键.VOCs的臭氧生成潜势(OFP)均值为162.88μg·m-3  相似文献   

9.
挥发性有机物(VOCs)是大气臭氧(O3)的重要前体物,珠三角地区夏、秋季O3污染频发,科研人员在其城市地区已开展多项VOCs观测研究,但对珠三角背景地区的VOCs组成和来源认识不足.本研究于深圳市东部沿海地区的大鹏半岛开展VOCs多点位同步监测,初探该背景区域VOCs的污染特征.结果表明,整个区域VOCs浓度水平呈现出西高东低的空间分布;观测期间平均总VOCs(TVOCs)浓度为27.4×10-9(体积分数,下同),最主要的组分是含氧有机物(OVOCs)、烷烃和卤代烃,浓度合计占80.4%;OVOCs、芳香烃和烯烃是臭氧生成潜势(OFP)和羟基自由基损耗速率(L·OH)占比最高的3类组分,总OFP为86.5×10-9,合计L·OH为8.6 s-1,需重点关注乙醛、异戊二烯、丙醛、正丁醛和间/对-二甲苯等高活性物种.整个区域气团较为老化,受到来自东北方向气团区域传输的影响.解析出VOCs主要的5个来源为车辆排放、溶剂和其他工业源、二次...  相似文献   

10.
为了解挥发性有机物(VOCs)对深圳市城区臭氧(O3)生成的影响,探究O3污染的防控策略,基于莲花站在线观测数据对2018年秋季O3污染过程中VOCs对O3生成影响进行量化研究.在分析O3污染特征的基础上,基于观测的模型分析了O3原位生成特征,识别了影响O3生成的关键VOCs组分,并量化了其对O3生成的影响.结果表明:①深圳市城区秋季O3污染过程具有高温低湿的特征,主导风向主要为持续偏北风影响型、海陆风影响型和无明显主风型,其中海陆风影响型和无明显主风型受传输影响导致φ(O3)在傍晚后呈居高不下的特征.②不同主导风向类型下,深圳市城区O3化学生成的建模结果具有一致性.污染日O3最大小时净生成速率平均值为12.85×10-9 h-1,HO2·+NO和RO2·+NO两种途径对O3生成的贡献率分别为57.9%~60.2%和39.8%~42.1%.③深圳市城区O3生成受VOCs控制,其中植物源ISO(异戊二烯)和人为源VOCs组分中的XYM(间/对-二甲苯)、TOL(甲苯等其他芳香烃)、HC8(高碳数烷烃)、OLT(直链烯烃)是影响O3生成的五大关键组分.④φ(ISO)和φ(AHC)(AHC为人为源VOCs)单独下降20%,φ(O3)小时峰值分别下降6.2%和28.0%,其中AHC组分中以φ(XYM)降低带来的φ(O3)下降效果最显著,降幅为10.1%.研究显示:人为源VOCs组分体积分数的下降对降低φ(O3)有显著效果,建议以二甲苯类物种来源为重要管控对象,特别是机动车排放与溶剂使用源;同时,建议加强醛酮类VOCs的监测与研究,为O3的污染治理及污染源的精细化管控提供依据.   相似文献   

11.
基于国家干线公路交通量信息,运用GIS的路网线性参考系统,计算珠三角地区夏季NOx和VOCs排放量,使用最大增量反应活性(MIR)和经验公式,分别估算VOCs和NOx的O3生成及其强度的空间分布特征.结果表明,夏季VOCs的排放量占比总体上与各类型车辆数占比一致,而汽油车的NOx排放量占比与车辆数差异较大;VOCs排放的分布与NOx基本相似,广州市是NOx和VOCs排放量最高的城市,珠海、中山和江门3个城市的排放量较小;NOx的O3生成总量与生成能力成反比,所有车型中烯烃和芳香烃对O3生成贡献率都是最大的,而排放量较大的烷烃生成O3量最低;路网密度大的广州市、深圳市,汽车排放的NOx和VOCs量相对较高,其产生的O3浓度也较高,对于路网密度较小的城市(如珠海市),其O3污染主要以交通干线为中心,向外扩散,O3生成量较小.  相似文献   

12.
福建省莆田市作为典型的海滨城市,自2015年以来以O3为首要污染物的天数逐年增加.为了制定科学有效的减排措施,减轻莆田市的O3污染,以2016年莆田市O3污染高发的7—9月为研究时段,通过观测数据分析、空气质量模型敏感性分析和O3来源追踪方法分析了莆田市近地面O3生成控制区,以及O3及其生成前体物NOx与VOCs的区域和行业来源.结果表明:①莆田市西部地区为NOx控制区,而东部沿海地区则为VOCs控制区.②莆田市ρ(NOx)与ρ(VOCs)主要来自本地排放贡献,二者本地排放的贡献率分别为69.4%与64.2%,而本地排放对莆田市ρ(O3)的贡献率仅为21.0%,福建省福州市和泉州市对莆田市ρ(O3)的贡献率之和为37.6%,外来输送贡献率较大的为浙江省,其贡献率为11.6%.莆田市O3的外来输送不仅发生在ρ(O3)较高的时段,在ρ(O3)较低的时段也占了很大的比例.③莆田市工业源对本地排放ρ(O3)贡献率最大,达57%,其次是机动车源.④通过敏感性时间序列分析得出,同时削减10%的NOx和VOCs排放,能使莆田市国控点位平均ρ(O3)峰值下降约5 μg/m3.研究显示,莆田市NOx与VOCs主要来自本地排放,O3受外来输送影响较大,推进本地工业NOx和VOCs污染的治理与加强机动车尾气的污染控制是减轻本地O3污染的有效方法.   相似文献   

13.
为研究煤化工产业园区挥发性有机物(VOCs)污染特征及其对大气细颗粒物(PM2.5)和臭氧(O3)的贡献,本研究于2021年夏季利用气相色谱/质谱联用仪在某大型煤化工产业园区开展了环境空气115种VOCs的在线监测研究,分析了VOCs的浓度水平、组成特征、日变化特征、潜在来源及其对O3和PM2.5中二次有机气溶胶(SOA)的生成贡献. 结果表明:①观测期间,园区站点VOCs的平均体积分数为89.32×10?9±50.57×10?9,显著高于该园区所在城市的城区站点VOCs浓度水平. ②含氧VOCs (OVOCs)是该园区VOCs的主要特征污染物,占总VOCs体积分数的48.2%,乙醇、丙醛和甲醛是体积分数排名前三的物种. ③VOCs的臭氧生成潜势(OFP)为595.64 μg/m3,各组分对O3贡献潜势的大小表现为OVOCs>烯烃>芳香烃>烷烃>卤代烃>含硫VOC>炔烃. OFP排名前十的物种均为OVOCs、烯烃和芳香烃,其中丙醛对OFP的贡献占比最高,占总OFP的22.2%. ④间/对-二甲苯、邻二甲苯和乙苯等苯系物对二次有机气溶胶生成潜势(SOAFP)的贡献突出,其中间/对-二甲苯的SOAFP最大,占总SOAFP的29.6%,主导了SOA生成. 研究显示,煤化工产业园区中丙醛和甲醛等OVOCs、顺-2-丁烯等烯烃以及间/对-二甲苯与邻二甲苯等芳香烃对大气复合污染贡献较大,是开展PM2.5和O3污染协同控制重点关注的物种.   相似文献   

14.
参照美国环保署USEPATO-14标准方法,分别于非采暖、采暖和沙尘期采集新疆独山子区空气样品,用预浓缩仪和气相色谱/质谱联用系统对其挥发性有机物(VOCs)进行分析.结果表明,采样期间独山子区各类VOCs对总VOCs的贡献大小依次是:烷烃(61.80%) > 烯烃(18.62%) > 芳香烃(10.16%) > 乙炔(9.42%);用气溶胶生成系数(FAC)估算VOCs的二次有机气溶胶(SOA)生成潜势表明,对SOA生成贡献最大的是芳香烃,在非采暖、采暖和沙尘期的贡献率分别为97.80%、87.28%和69.52%;用SPSS软件和广义相加模型(GAM)分析气象因素、VOCs、O3及NOx之间的关系,表明高温干燥天气有利于O3生成,且独山子区O3生成主要受VOCs控制,一些烯烃(如1-丁烯)与O3呈显著线性关系.  相似文献   

15.
于2020年9~10月在深圳北部典型工业区开展在线观测以分析该地VOCs污染状况,并使用基于观测的模型(OBM)研究臭氧生成敏感性.观测期间VOCs的总浓度为48.5×10-9,浓度水平上烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈.臭氧生成潜势(OFP)为320μg/m3,其中芳香烃、OVOCs以及烷烃贡献最大,这3类物种OFP贡献总和超过90%.乙烯与苯呈现“两峰一谷”的日变化特征,主要受到机动车排放的贡献.相对增量反应性(RIR)分析表明,削减人为源VOCs对控制当地臭氧生成最为有效,当中又应优先控制芳香烃;经典动力学曲线(EKMA)分析表明该片区臭氧生成处于过渡区,在开展VOCs区域联防联控的同时,需要在当地进行有力的NOx控制以强化该地区臭氧污染长期管控.  相似文献   

16.
王逸豪  张宇  雷宇 《环境科学研究》2023,36(6):1072-1082
O3污染的防治需要在分析O3人群暴露风险特征的基础上,对前体物的减排路径进行优化.长三角地区是我国O3浓度高、暴露风险大、前体物排放集中的地区之一,其减排路径的优化分析对于全国而言具有借鉴意义.本文以GB 3095—2012《环境空气质量标准》中O3浓度二级标准限值(160μg/m3)为目标,基于长三角地区的人群暴露风险探讨了不同减排路径下的O3污染控制效果.首先,运用WRF-CAMx模型,依据不同的NOx和VOCs减排率模拟了121种减排情景作为基础数据集,引入响应曲面模型(RSM)来划分长三角地区不同城市的控制区类型,并结合人口暴露风险指数来评价O3暴露的风险程度,将中高暴露风险地区与控制区耦合,设置HN区(NOx控制区中的O3暴露中高风险城市)和HV区(VOCs控制区中的O3暴露中高风险城市);其次,设置了7条不同的NOx  相似文献   

17.
为揭示湖北省PM2.5和臭氧(O3)复合污染演变特征,基于湖北省17个地市的空气质量国控点和武汉市大气超级站组分监测数据,全面分析湖北省17个地市2015—2020年PM2.5和O3的时空变化特征及相关关系,探讨PM2.5和O3协同效应的成因机理. 结果表明:①2015—2020年,湖北省PM2.5显著改善,平均降幅为4.7 μg/(m3·a),但冬季负荷仍较高,主要集中于中部地区;O3污染凸显,平均增幅为3.8 μg/(m3·a),污染集中在4—10月的暖季,东部地区最严重,近两年超标天数已与PM2.5相当. ②湖北省PM2.5和O3关联日趋密切,协同效应显著,日评价指标显示夏季二者呈显著正相关(相关系数为0.57),近两年当PM2.5浓度≤50 μg/m3时,相关系数高达0.63;冬季PM2.5浓度与Ox(O3+NO2)浓度呈正相关,尤其2020年东部城市二者相关性高达0.46,显示大气氧化性对PM2.5二次污染的重要性. ③以武汉市为例,归纳PM2.5和O3复合污染的成因,暖季低PM2.5背景下,高温、中等湿度和弱风速的气象条件以及VOCs和NOx等前体物的高浓度排放,使得受VOCs主控的光化学反应加剧,易造成O3污染,从而加强PM2.5二次生成;冬季高的大气氧化性,叠加不利气象条件,促进颗粒物的二次生成,导致重污染时PM2.5组分以硝酸盐等二次无机组分为主. 研究显示,湖北省PM2.5和O3协同控制重点为,在保持现有NOx控制力度基础上强化VOCs控制,遏制暖季和东部区域O3浓度上升,加强冬季和中部PM2.5治理.   相似文献   

18.
基于山西省2018—2020年国控点位O3监测数据分析了全省O3污染特征,分别以晋城市和太原市为典型城市,分析了温度、相对湿度和风向风速等气象因子以及前体物(NOx和VOCs)对O3的影响,并采用CAMx模式开展2020年6—8月山西省O3区域和行业来源解析. 结果表明:① 山西省O3超标天数中以O3轻度污染为主,且中度及以上污染呈增加趋势,O3污染集中出现在5—9月,且呈现较强的地域性特征,O3浓度日变化呈单峰型特征. ② ρ(O3-1 h)(臭氧1 h平均浓度)与气温、风速均呈正相关,与相对湿度呈负相关,高温、低湿有利于O3的生成. 风速与ρ(O3-1 h)呈分段式线性关系,ρ(O3-1 h)随着风速增大而升高,当风速大于某一阈值时,ρ(O3-1 h)随风速的增加而下降. 以典型城市晋城市为例,当温度在25 ℃以上、相对湿度在30%~60%之间、风速为4~5 m/s,且风向为南风和东南风时更容易出现ρ(O3-1 h)高值. ③ 山西省2020年6—8月O3区域来源解析表明,各城市O3本地源贡献较弱而传输贡献影响显著(>80%). ④ 山西省2020年6—8月O3行业来源解析表明,各市工业源类(电力源、焦化源和其他工业源)的贡献率在50%左右,柴油交通源贡献率在20%~27%之间. 研究显示,山西省O3污染传输贡献影响显著,联防联控势在必行,电力源、焦化源和柴油交通源对O3生成贡献较大,亟需优先加强管控.   相似文献   

19.
为探究黄河三角洲代表性城市东营市夏季环境空气臭氧(O3)污染成因,利用2021年6月东营市大气超级站监测数据与基于观测的化学盒子模型(OBM),较为全面地分析了O3污染特征与O3生成敏感性机制,并开展了前体物减排效果评估. 结果表明:①2021年6月东营市O3污染较严重,O3污染天〔日最大8 h平均O3浓度值(MDA8-O3)≥160 μg/m3〕占比达50.0%,MDA8-O3、挥发性有机物(VOCs)和氮氧化物(NOx)浓度平均值较非污染天分别升高70.0%、10.4%和7.6%. ②O3污染天呈高温、低湿的特点,O3浓度与温度的相关性在污染天显著增强. ③基于本地化的O3生成潜势计算表明,与非污染天相比,污染天异戊二烯、乙烯和甲苯对O3生成潜势的贡献分别增加了114.3%、68.6%和38.2%. ④污染天O3本地净生成速率明显升高. O3生成处于VOCs-NOx协同控制区,减少VOCs和NOx排放均可有效降低O3生成. 研究显示,现阶段东营市应实施VOCs/NOx协同减排比例大于或等于1∶1的减排策略,污染天(尤其是夜间)应加大NOx及VOCs减排力度,减轻污染天温度升高及植物源排放增加等不可控因素对O3污染的影响.   相似文献   

20.
《大气污染防治行动计划》实施以来,我国重点区域PM2.5浓度快速下降,但臭氧(O3)浓度逐步上升,大气污染控制形势已由单一的PM2.5控制转变为PM2.5和O3的协同控制. 了解PM2.5和O3对前体物排放变化和气象条件变化的响应,对制定PM2.5和O3协同控制策略具有重要意义. 本文通过使用FNL全球再分析资料和自下而上的排放清单ABaCAS-EI,结合三维空气质量模式和响应曲面模型,评估前体物变化和气象条件变化后PM2.5和O3浓度的响应,并依据解析的响应关系提出了前体物减排、联防联控区域划分和目标设定等方面的政策建议. 结果表明:①VOCs减排对降低各省份PM2.5和O3浓度均有利,NOx的减排量不足会导致京津冀、长三角地区的O3浓度和京津冀地区的PM2.5浓度增加,为避免PM2.5和O3年评价值反弹需要的VOCs与NOx减排比分别为15%~25%(PM2.5)和5%~90%(O3). ②O3污染防治需要更大范围的联防联控,对于京津冀地区,需要考虑引入河南省和山东省的联合控制,对于长三角和珠三角地区,还需要联合江西省、福建省进行控制. ③气象条件对PM2.5和O3背景值的影响较大,使用3年或5年滑动平均值可以有效降低气象条件年际变化对PM2.5和O3浓度的影响(对于PM2.5,2008—2019年其背景值极差的降幅分别为35%~81%或60%~86%;对于O3,极差的降幅分别为40%~67%或53%~87%). 采用多年滑动平均有助于科学设定和考核PM2.5和O3的控制目标. 研究显示:PM2.5和O3的协同控制依赖于NOx和VOCs的协同减排,其减排比例在不同地区存在差异;此外,科学的PM2.5和O3的协同控制还需要更大范围的联防联控和评价指标的持续更新.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号