首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着我国社会经济和城市化的快速发展,大气颗粒物是影响我国城市空气质量的首要污染物,大气细颗粒物污染已严重威胁我国居民健康。本文简要综述了PM2.5诱导的氧化应激和炎症反应在糖尿病的发生和发展中的分子作用机制。  相似文献   

2.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has well characterized effects on specific immune responses, but the effects on the innate immune system are less understood. The effect of TCDD on inflammatory responses induced by lipopolysaccharide (LPS) was evaluated in C57BL/6J female mice. Mice were treated with 30?µg?kg?1 TCDD or vehicle once, p.o., and 4 days later, animals received LPS (0.05?×?107?EU?kg?1, i.p.) or vehicle. Inflammatory mediators and the liver injury marker, alanine aminotransferase (ALT), were measured, and liver histology was evaluated. TCDD-treated animals had higher plasma ALT activity than vehicle-treated animals, but the effect was mild and time-dependent. Few changes in liver histopathology were observed, mainly represented in greater steatosis in TCDD/LPS-treated mice compared to mice treated with LPS or TCDD alone. LPS produced a time-dependent increase in the plasma concentrations of interleukins (IL)-6, -10, and -12 and interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1. With the exception of IL-12, concentrations of each of these mediators were higher in plasma of mice co-treated with TCDD and LPS compared to either agent alone. The dose–response curve for the concentration of IL-6 in plasma suggested that dioxin increased the potency of LPS to cause the release of this cytokine but not the maximal response. Co-treatment with TCDD and LPS also led to greater expression of mRNA for IL-10 and IFN-γ compared to either TCDD or LPS alone. These results suggest that TCDD changes the inflammatory cytokine profile induced by LPS and that LPS enhances the hepatic steatotic response to TCDD.  相似文献   

3.
Trussell GC  Matassa CM  Luttbeg B 《Ecology》2011,92(9):1799-1806
There is strong evidence that the way prey respond to predation risk can be fundamentally important to the structuring and functioning of natural ecosystems. The majority of work on such nonconsumptive predator effects (NCEs) has examined prey responses under constant risk or constant safety. Hence, the importance of temporal variation in predation risk, which is ubiquitous in natural systems, has received limited empirical attention. In addition, tests of theory (e.g., the risk allocation hypothesis) on how prey allocate risk have relied almost exclusively on the behavioral responses of prey to variation in risk. In this study, we examined how temporal variation in predation risk affected NCEs on prey foraging and growth. We found that high risk, when predictable, was just as energetically favorable to prey as safe environments that are occasionally pulsed by risk. This pattern emerged because even episodic pulses of risk in otherwise safe environments led to strong NCEs on both foraging and growth. However, NCEs more strongly affected growth than foraging, and we suggest that such effects on growth are most important to how prey ultimately allocate risk. Hence, exclusive focus on behavioral responses to risk will likely provide an incomplete understanding of how NCEs shape individual fitness and the dynamics of ecological communities.  相似文献   

4.
Predator–prey relationships provide an excellent opportunity to study coevolved adaptations. Decades of theoretical and empirical research have illuminated the various behavioral adaptations exhibited by prey animals to avoid detection and capture, and recent work has begun to characterize physiological adaptations, such as immune reactions, metabolic changes, and hormonal responses to predators or their cues. A 2-year study quantified the activity budgets and antipredator responses of adult Belding’s ground squirrels (Spermophilus beldingi) living in three different California habitats and likely experiencing different predation pressures. At one of these sites, which is visually closed and predators and escape burrows are difficult to see, animals responding to alarm calls remain alert longer and show more exaggerated responses than adults living in two populations that likely experience less intense predation pressure. They also spend more time alert and less time foraging than adults at the other two sites. A 4-year study using noninvasive fecal sampling of cortisol metabolites revealed that S. beldingi living in the closed site also have lower corticoid levels than adults at the other two sites. The lower corticoids likely reflect that predation risk at this closed site is predictable, and might allow animals to mount large acute cortisol responses, facilitating escape from predators and enhanced vigilance while also promoting glucose storage for the approaching hibernation. Collectively, these data demonstrate that local environments and perceived predation risk influence not only foraging, vigilance, and antipredator behaviors, but adrenal functioning as well, which may be especially important for obligate hibernators that face competing demands on glucose storage and mobilization.  相似文献   

5.
Despite the importance of acquired predator recognition in mediating predator–prey interactions, we know little about the specific characteristics that prey use to distinguish predators from non-predators. Recent experiments with mammals and fish indicate that some prey lacking innate predator recognition have the ability to display anti-predator responses upon their first encounter with those predators if they are similar to predators that the prey has recently learned to recognize. This phenomenon is referred to as generalization of predator recognition. In this experiment, we documented for the first time that larval amphibians (woodfrog, Rana sylvatica) have the ability to generalize the recognition of known predators to closely related novel predators. Moreover, we demonstrated that this ability is dependent on the level of risk associated with the known predator. When red-bellied newt, Cynops pyrrhogaster (known predator), was paired with simulated low risk, tadpoles displayed fright responses to newts and novel tiger salamanders, Ambystoma tigrinum, but not to novel African clawed frogs, Xenopus laevis. However, when the newt was paired with simulated high risk, tadpoles generalized their responses to both tiger salamanders and African clawed frogs. Larval anurans seem to have a wider generalization frame than other animals.  相似文献   

6.
Xu  Hongmei  Guinot  Benjamin  Ho  Steven Sai Hang  Li  Yaqi  Cao  Junji  Shen  Zhenxing  Niu  Xinyi  Zhao  Zhuohui  Liu  Suixin  Lei  Yali  Zhang  Qian  Sun  Jian 《Environmental geochemistry and health》2018,40(2):849-863

Air pollutant measurement and respiratory inflammatory tests were conducted at a junior secondary school in Xi’an, Northwestern China. Hazardous substances including particulate matters (PMs), black carbon (BC) and particle-bounded polycyclic aromatic hydrocarbons (PAHs) were quantified both indoors and outdoors of the school. Source characterization with organic tracers and particle-size distribution demonstrated that the school’s air was mostly polluted by combustion emissions from the surrounding environment. The evaluation of health assessment related to air quality was conducted by two methods, including potential risk estimation of air pollutants and direct respiratory inflammatory test. The incremental lifetime cancer risks associated with PAHs were estimated and were 1.62 × 10−6 and 2.34 × 10−6, respectively, for indoor and outdoor fine PMs. Both the values exceeded the threshold value of 1 × 10−6, demonstrating that the carcinogenic PAHs are a health threat to the students. Respiratory inflammatory responses of 50 students who studied in the sample classroom were examined with a fractional exhaled nitric oxide (FeNO) test, with the aid of health questionnaires. The average FeNO concentration was 17.4 ± 8.5 ppb, which was slightly lower than the recommended level of 20 ppb established by the American Thoracic Society for children. However, a wide distribution and 6% of the values were > 35 ppb, suggesting that the potentials were still high for eosinophilic inflammation and responsiveness to corticosteroids. A preliminary interpretation of the relationship between air toxins and respiratory inflammatory response demonstrated the high exposure cancer risks and inflammatory responses of the students to PMs in the city.

  相似文献   

7.
Among the myriad particles the human respiratory tract is exposed to, a significant number are distinctive in that they include humic substances (HS) and humic-like substances (HULIS) as organic components. HS are heterogeneous, amorphous, organic materials which are ubiquitous occurring in all terrestrial and aqueous environments. HULIS are a complex class of organic, macromolecular compounds initially extracted from atmospheric aerosol particles which share some features with HS including an aromatic, polyacidic nature. As a result of having a variety of oxygen-containing functional groups, both HS and HULIS complex metal cations, especially iron. Following particle uptake by cells resident in the lung, host iron will be sequestered by HS- and HULIS-containing particles initiating pathways of inflammation and subsequent fibrosis. It is proposed that (1) human exposures to HS and HULIS of respirable size (<10 µm diameter) are associated with inflammatory and fibrotic lung disease and (2) following retention of particles which include HS and HULIS, the mechanism of cell and tissue injury involves complexation of host iron. Human inflammatory and fibrotic lung injuries following HS and HULIS exposures may include coal workers’ pneumoconiosis, sarcoidosis, and idiopathic pulmonary fibrosis as well as diseases associated with cigarette smoking and exposures to emission and ambient air pollution particles.  相似文献   

8.
Dalesman S  Rundle SD  Bilton DT  Cotton PA 《Ecology》2007,88(10):2462-2467
Interspecific recognition of alarm cues among guild members through "eavesdropping" may allow prey to fine-tune antipredator responses. This process may be linked to taxonomic relatedness but might also be influenced by local adaptation to recognize alarm cues from sympatric species. We tested this hypothesis using antipredator responses of a freshwater gastropod Lymnaea stagnalis (L.) to alarm cues from damaged conspecific and 10 heterospecific gastropod species. As predicted, the magnitude of antipredator response decreased significantly with increasing phylogenetic distance, but increased when species were naturally sympatric (defined as species cohabiting in the same water body) with the source population of L. stagnalis. The responses to sympatric species were higher overall, and the relationship between genetic distance and alarm cue response was stronger when tested with sympatric species. This is the first study to demonstrate that population sympatry influences innate antipredator responses to alarm cues from intraguild members and suggests that responses based on phylogenetic relationships can be modified through local adaptation. Such adaptation to heterospecific alarm cues suggests that species could be at a disadvantage when they encounter novel intraguild members resulting from species invasion or range expansion due to a reduction in the presence of reliable information about predation risk.  相似文献   

9.
Immunoecology deals with the questions about how immune defences have evolved and are being used and optimized in different environments, ecological settings and lineages. In such research, often only single time point measures and small sample volumes are available, which limits the applicability of traditional immunological methods. Methodological progress in the field thus largely depends on the development and validation of immune assays suitable for ecological studies. Here we validate and apply a novel, Pholasin-based chemiluminescence method for assessment of oxidative burst in the whole blood samples of birds. This assay measures an inducible component of innate immunity by quantifying the immediate extracellular oxidative burst of stimulated phagocytes. The assay procedure is simple, measurement precision is satisfactory and the measurement time is only 6 min. It can be performed on 20 μL (or smaller) blood samples that can be preserved for a few days. Blood of six studied passerine species produced chemiluminescence response to stimulation with bacterial lipopolysaccharide (LPS) in vitro. The magnitude of the response depended on the concentration and origin of the LPS. Parameters of this response depended on biological factors such as age of birds and in vivo priming with different antigens such LPS and Brucella abortus antigen suspension. Different parameters of the chemiluminescence response were significantly repeatable over 6-day period. All these properties argue for a great potential applicability of this method in immunoecological research.  相似文献   

10.
高通量测序技术极大地方便了深度考察不同种群中宿主相关微生物群的组成和功能。研究表明微生物在动物包括人类的健康和疾病发病中扮演着必要的角色。微生物已成为环境毒理学中新兴的重要研究主题。这是因为微生物在免疫系统中起着重要的交互的作用,同时在化学解毒中也有作用。污染物扰动肠道微生物,引起胃肠组织的病理生理变化,导致一系列系统效应,致使营养摄入变差和肠道发炎。本文检索了关于环境污染物对水生物种微生物影响的文献,重点关注了肠道微生物。我们强调了脊柱动物宿主中的一些已知的肠道上皮细胞的主要蛋白,这些均是化合物破坏的靶标,这些蛋白可以与微生物直接对话。我们提出了一个有害结局路径(adverse outcome pathway)的总体框架,将肠道生态失调作为有害效应终点事件的主要贡献因子。我们展示了两个案例研究,分别是(1)纳米材料;(2)碳氢化合物,我们参考了Deepwater Horizon港口的石油泄漏事件, 生态失调在案例中展示了微生物的考察如何改善有害结局的研究。最后,我们提出了一些策略以建立化合物诱导的肠道生态失调与有害结局的关联。我们通过实验建立了特定微生物与肠道生态失调的关联。对毒物与微生物关系的深入研究将成为改善动物及人类健康的重大突破。 精选自Ondrej Adamovsky, Amanda N. Buerger, Alexis M. Wormington, Naomi Ector, Robert J. Griffitt, Joseph H. Bisesi Jr., Christopher J. Martyniuk. The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry,2018,37:2758-2775.
详情请见 https://doi.org/10.1002/etc.4249
  相似文献   

11.
One of the most important measures of offspring performance is growth rate, which is often traded off against another important survival trait, immune function. A particular feature of ostrich chicks maintained in farmed environments is that cohorts of chicks vary widely in size. As parents can have a profound effect on the phenotype and fitness of their offspring, we investigated whether chick growth and immune defence were related to variation in levels of immune defence in their genetic parents. As secondary sexual traits of sires could serve as indicators of male quality, and be used in female mating decisions, we also investigated whether chick growth rate and immune defence were related to male plumage and integumentary colouration. We found that offspring growth rates and humoral responses were related to the humoral responses of their parents, suggesting that at least some components of humoral immune capacity are heritable. The white colour of male ostrich feathers was correlated to the humoral response and growth rate of their offspring, suggesting that this visual cue involved in the male courtship display could serve as an important signal to females of male quality, thereby forming the basis of mate choice in this species.  相似文献   

12.
Madin EM  Gaines SD  Warner RR 《Ecology》2010,91(12):3563-3571
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.  相似文献   

13.
Soil management for sustainable crop disease control: a review   总被引:2,自引:0,他引:2  
Excessive use of agrochemicals in conventional crop management has caused serious environmental and health problems including loss of biodiversity and human disorders. A number of chemical biocides have shown complex chronic effects such as change in endocrine functions and immune systems. Application of different chemical biocides to the soil and plants have increased substantially over the last five decades. Total consumption of chemical fertilizers worldwide increased tenfold from 1950 to 2000. This is also true for chemical biocides with its annual current use of 3 billion l and a value of 30 billion dollars. There are ample evidences indicating that plants which grow in rich soil associated with N-P-K availability are prone to pests and diseases. Managing and exploiting soil environmental conditions as part of an integrated control strategy can make a significant contribution to agricultural sustainability and environmental quality. Application of organic matter and practises which increase the total microbial activity in the soil might enhance general suppression of pathogens by increasing competition for nutrients. Choice of crops in rotation with plants less susceptible to specific pathogens causes a decline in population due to natural mortality and the antagonistic activities of co-existent root zone microorganisms. Plants growing in disease-suppressive soil resist diseases much better than in soils with low biological diversity. Understanding the effect of soil environmental factors on plant disease incidence and the best crop management strategies to prevent, avoid, escape and control diseases were the aims of this literature review. This article comprises the main topics on soil fertility associated with N-P-K and other macro- and micro nutrients, and also soil pH, structure and texture, organic matter and microbial reserves, describes the use of various crop management practises which reduce the incidence of plant diseases.  相似文献   

14.
Immunosenescence, the aging of the immune system, is well documented in humans and laboratory models and is known to increase infection risk, morbidity, and mortality among the old. Immunosenescence patterns have recently been unveiled in various free-living populations, but their consequences in the wild have not been explored. We investigated the consequences of immunosenescence in free-living Tree Swallows Tachycineta bicolor through a field experiment simulating a bacterial infection (challenge with lipopolysaccharide, LPS) in females of different ages during the nestling rearing period. We assessed behavioral and physiological responses of females, as well as growth and quality of their offspring, to determine the costs associated with the simulated infection. Results of the experiment differed between the two years of study. In the first year, old females challenged with LPS lost more body mass and reduced their nest visitation rates more, and their offspring tended to grow slower compared to similarly challenged younger females. In contrast, in the second year, old females did not appear to suffer larger costs than younger ones. Interestingly, immunosenescence was only detected during the first year of the study, suggesting that it is the dysregulated immune function characteristic of immunosenescent individuals rather than age per se that can lead to higher costs of immune defense in old individuals. These results provide the first evidence of costs of immunosenescence in free-living animals and support the hypothesis that old, immunosenescent individuals pay higher costs than younger ones when faced with a challenge to their immune system. Our results also suggest that these costs are mediated by an exaggerated sickness behavior, as seen in laboratory models, and can be modulated by ecological factors such as weather conditions and food availability.  相似文献   

15.
Glyphosate has become the most commonly used herbicide worldwide and is reputedly environmentally benign, nontoxic, and safe for use near wildlife and humans. However, studies indicate its toxicity is underestimated and its persistence in the environment is greater than once thought. Its actions as a neurotoxin and endocrine disruptor indicate its potential to act in similar ways to persistent organic pollutants such as the organochlorines dichlorodiphenyltrichloroethane (DDT) and dioxin. Exposure to glyphosate and glyphosate‐based herbicides for both wildlife and people is likely to be chronic and at sublethal levels, with multiple and ongoing exposure events occurring in urban and agricultural landscapes. Despite this, there has been little research on the impact of glyphosate on wildlife populations, and existing studies appear in the agricultural, toxicology, and water‐chemistry literature that may have limited visibility among wildlife biologists. These studies clearly demonstrate a link between chronic exposure and neurotoxicity, endocrine disruption, cell damage, and immune suppression. There is a strong case for the recognition of glyphosate as an emerging organic contaminant and substantial potential exists for collaborative research among ecologists, toxicologists, and chemists to quantify the impact of glyphosate on wildlife and to evaluate the role of biosentinel species in a preemptive move to mitigate downstream impacts on people. There is scope to develop a decision framework to aid the choice of species to biomonitor and analysis methods based on the target contaminant, spatial and temporal extent of contamination, and perceived risk. Birds in particular offer considerable potential in this role because they span agricultural and urban environments, coastal, inland, and wetland ecosystems where glyphosate residues are known to be present.  相似文献   

16.
Sickness behaviors constitute an array of symptoms exhibited by an animal during the course of an infection, including reduced activity, reduced food and water intake, and reduced social interactions. It is hypothesized that these symptoms enable reallocation of finite energy resources to fight infection. In this way, by focusing energy on healing, available resources are being removed from other activities, potentially reducing adaptive opportunities, such as mating. Hence, to achieve increased reproductive success, animals might be able to adjust the expression of sickness behaviors to their environmental circumstances. While abiotic conditions such as temperature and season can modulate sickness behaviors, no studies in passerines have linked modulation of sickness behaviors to social settings. Here, it is demonstrated that social surroundings affect the extent to which animals exhibit symptoms of sickness. After an immune challenge, zebra finches kept in isolation markedly reduced activity, but those kept in a colony setting did not. The same trend is verified when looking at the time they spent resting. Additionally, a proinflammatory cytokine (interleukin-6) was quantified in plasma samples and all animals that had been immune challenged showed increased levels of this marker, showing that the physiological response was similar. Hence, birds in a social context were able to overcome the behavioral, but not physiological, symptoms usually associated with an inflammatory response. These findings suggest a trade-off between allowing the body to respond to an infection and taking advantage of being in a social situation.  相似文献   

17.
Although much is known about the relationship between vigilance, group size and predation risk, behavioural responses to predation risk and their resultant costs are less clear. We investigated the response of Diana monkeys to increased predation risk by looking at behavioural changes associated with male long-distance calls, which are reliably given to certain predators. After male long-distance calls, group spread and nearest-neighbour distance decreased whilst travel and association rates for the group increased. The average height and exposure level of individuals in the group did not change after calls. Individual Diana monkeys changed their behaviour and were more likely to be vigilant or travel and less likely to engage in social or resting behaviours after long-distance calls. In addition, movement rates increased with the number of species the Diana monkeys were associated with. Diana monkey long-distance calls facilitate the joining of groups of other species. Black and white colobus and lesser spot-nosed monkeys were more likely to be in an association following a long-distance call than before. Behavioural responses, such as increased travel or association rates, that reduce foraging efficiency are interpreted as evidence of a non-lethal impact of increased predation risk.  相似文献   

18.
The recently funded Spatial Environmental Epidemiology in New South Wales (SEE NSW) project aims to use routinely collected data in NSW Australia to investigate risk factors for various chronic diseases. In this paper, we present a case study focused on the relationship between social disadvantage and ischemic heart disease to highlight some of the methodological challenges that are likely to arise.  相似文献   

19.
The ability to discriminate between more dangerous and less dangerous predators can have serious fitness advantages for fish juveniles. This is especially true for hatchery-reared fish young used for stocking, because their post-release mortality is often much higher than that of wild-born conspecifics. We tested whether two coexisting fish predators and their different diets induce innate behavioral responses in predator-naive Arctic charr (Salvelinus alpinus) young originating from an endangered hatchery-bred population used for re-introductions. We predicted the antipredator responses of charr to be stronger towards chemical cues of brown trout (Salmo trutta) and pikeperch (Stizostedion lucioperca) than towards odorless control water. More pronounced antipredator behavior was predicted in treatments with predators fed on charr than when their diet consisted of another sympatric salmonid, European grayling (Thymallus thymallus), or when they were food-deprived. The Arctic charr young showed strong antipredator responses in all brown trout treatments, whereas odors of the less likely predator pikeperch were avoided with conspecific diet only. Freezing was the most sensitive antipredator behavior, as it was completely absent in control treatments. We found considerable individual variation in the amount and strength of antipredator responses. Although almost half of the charr failed to show antipredator behavior towards the piscivores, those with the innate ability showed highly sensitive recognition of predator odors. Our results indicate that the innate antipredator behavior of the juvenile fish is already finely tuned to respond specifically to chemical cues from different fish predators and even their diets.Communicated by J. Krause  相似文献   

20.

Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80–90% of pollution, while ocean-based sources account for only 10–20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8–85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号