首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于CAMx的徐州市2016年冬季PM2.5污染过程及来源分析   总被引:1,自引:0,他引:1  
徐州地处江苏西北部、华北平原的东南部,为内陆资源型工业城市,近几年来环境监测数据显示,徐州地区大气复合污染问题日益突出,准确模拟大气污染物状况及来源对于空气污染的防治十分关键.2016年1月,徐州市出现了多次持续的重污染天气,研究中以此次污染事件为例,首先基于WRF-CAMx空气质量模型系统对这次细颗粒物污染过程进行全面的模拟与分析,其次利用CAMx-PSAT系统模拟和分析本次污染的区域传输过程.研究结果显示:此次细颗粒物污染中,PM2.5组成成分以硫酸盐、元素碳、硝酸盐和铵盐为主,分别占月平均浓度的29%、15%、14%、14%;PM2.5的区域传输贡献中,长距离传输所占比重最大,月平均贡献率达46%,其次为本地源排放,平均贡献率为39%;重污染天气期间,PM2.5污染主要从西北方向输入,此时长距离传输的影响明显增大.  相似文献   

2.
王莹  智协飞  白永清  董甫  张玲 《环境科学》2022,43(8):3913-3922
作为一个新的区域性霾污染中心,长江中游地区地理位置特殊,是我国中东部地区大气污染物区域传输的重要枢纽,天气环流对该区域不同传输和累积型PM2.5重污染的形成机制还不甚了解.利用T-mode斜交旋转主成分分析法(PCT),对2015~2019年采暖季长江中游地区74 d PM2.5重污染事件进行天气环流分型,得到:PCT1高压底部传输型(天数:41 d,占比:55.4%)、PCT2低压辐合累积型(天数:12 d,占比:16.2%)、PCT3高压静稳累积型(天数:11 d,占比:14.9%)和PCT4高压后部传输型(天数:10 d,占比:13.5%)这4种主要的大气环流类型.区域传输型污染(PCT1和PCT4)占比高达69%,是长江中游地区PM2.5重污染发生的主导因素,突显了地域特殊性.其中,PCT1是最主要的环流型,冷锋南侵伴随强偏北风驱动上游地区污染物快速传输,使得PM2.5浓度暴发式增长.境内传输通道城市襄阳、荆门和荆州PM2.5传输过程具有12 h滞后特征,其PM2.5影响源区主要分布在上游的河南中北部、山东西部和华北大部分地区.PCT4传输型受低层偏东风输送影响,污染上升速率也相对较快.PCT2和PCT3为静稳天气环流型,地面风速较小,低层水平辐合和下沉运动有利本地PM2.5重污染累积,污染上升速率和持续时间都相对传输型更长.  相似文献   

3.
张冲  郎建垒  程水源  王晓琦 《环境科学》2019,40(8):3397-3404
2016年12月京津冀地区发生一次重污染过程,北京和天津于12月16日20:00至12月21日24:00,河北省(除张家口、承德和秦皇岛)于12月16日00:00至12月22日18:00发布了重污染红色预警.为研究重污染过程与应急措施的控制效果,基于环境监测数据与模型模拟结果对本次重污染过程的污染物浓度、天气形势与气团输送、区域传输和减排效果进行了研究.本次重污染过程中各地市PM2.5平均浓度均超过200 μg·m-3,小时均值峰值为834.5 μg·m-3.重污染期间气象条件非常不利于污染物扩散,低压控制与气团传输加剧了污染过程.各地市平均本地贡献为47.1%,受天气形势影响传输效果存在一定差异.本次红色预警期间京津冀地区PM2.5浓度平均下降比例为27.6%,减排效果明显.如果提前实施重污染应急措施,可以使PM2.5下降浓度有一定提升.提前2 d实施可以使PM2.5浓度平均下降比例增加4.4%,提前3 d以上效果提升不明显.  相似文献   

4.
2015年1月下旬北京市大气污染过程成因分析   总被引:7,自引:2,他引:5  
采用地面观测和数值模拟相结合的方式,对2015年1月下旬北京市两次PM2.5污染过程进行分析。研究表明,在第1次过程中PM2.5浓度经过3个抬升阶段达到峰值,过程前期区域传输的作用明显,随后区域传输和本地污染积累、化学反应共同加重了污染的程度;3个浓度抬升阶段中均出现过PM2.5浓度“跃升式”增长,且污染水平越重,浓度跃升的幅度越大。第2次过程是一次典型的静风、高湿度下的PM2.5持续性增长过程,主要是本地污染物积累和发生化学反应二次生成导致的。大气氧化性分析和SOR、NOR分析均验证了对两次污染过程特征和成因的推断。数值模拟结果表明,第1次污染过程中区域传输对不同站点PM2.5的贡献率在15.2%~68.7%之间;第2次过程区域传输的贡献率在12.8%~46.3%之间。  相似文献   

5.
为认识近年来长江流域中游两湖(湖南-湖北)盆地大气环境变化特征,本文利用两湖盆地2015~2019年冬季近地面PM2.5和PM10观测数据,结合风速、地形和植被指数等资料,探讨两湖盆地冬季大气颗粒物PM2.5和PM10的变化特征及其与风速、地形和下垫面的关联.结果表明:①两湖盆地2015~2019年冬季PM2.5污染频发,其中两湖盆地西北部的襄阳和荆门的冬季平均分别多达62 d和61 d出现PM2.5污染(PM2.5>75 μg·m-3),襄阳重污染(PM2.5>150 μg·m-3)多达19 d,表明两湖盆地是长江流域中游地区一个区域性PM2.5污染中心.②在空间上,两湖盆地污染呈现出西北重东南轻、城市群污染较重的特征,这主要与冬季风驱动的大气污染物的区域传输和两湖盆地城市地区的强排放有关.③近地面风速与PM2.5和PM10地面浓度变化呈现特殊的"U"型非线性关系,PM2.5和PM10浓度拐点值分别为153 μg·m-3和210 μg·m-3,揭示了两湖盆地局地大气颗粒物累积主导了轻/中度污染,大气污染物区域传输决定了重度污染的独特区域特征.④两湖盆地冬季PM2.5和PM10地面浓度与地形高度和植被指数均呈显著负相关,反映了两湖盆地地形和城市化下垫面变化的大气环境效应.  相似文献   

6.
2013年12月上海市PM2.5重污染过程数值模拟研究   总被引:1,自引:0,他引:1  
基于2013年11月30日-12月13日上海一次PM2.5重污染过程,利用Model-3/CMAQ模式及过程分析技术,定量评估不同时段各大气过程对上海PM2.5浓度变化的影响.结果表明:Model-3/CMAQ模式系统能较好的模拟出实况PM2.5的浓度变化趋势与特点.研究期间,白天源排放的增强和大气传输的影响、加上较强的气溶胶和云过程生成贡献,是造成上海PM2.5浓度上升至重污染的主要原因.不同污染时段对PM2.5浓度上升贡献率最大的过程均为输送,其中,西北部点位(青浦淀山湖和虹口凉城输送)的贡献率最大,且重污染时段输送的贡献率明显高于非重污染时段.  相似文献   

7.
基于WRF-CHEM模式模拟研究2016年11月、12月关中地区两次大气重污染事件期间咸阳市本地排放对当地PM2.5污染水平的贡献以及关中地区主要污染源排放对咸阳市PM2.5质量浓度的贡献。模式合理地模拟了研究时段内关中地区PM2.5质量浓度的时空变化特征,较好地再现了大气污染过程。敏感性试验结果表明:秋冬季重污染期间咸阳市本地排放对当地PM2.5的贡献约为30%,外源输送的贡献高达50%—60%。在关中地区的主要污染源中,居民源是秋冬季咸阳市PM2.5最主要的来源,在秋冬季的贡献分别为37.4%和60.6%;工业源和交通源对咸阳市秋季PM2.5的贡献分别为22.1%和11.2%,冬季的贡献分别为15.6%和9.8%;电厂源对秋冬季咸阳市PM2.5的贡献约为2.0%。因此,在秋冬季大气重污染期间,应该主要通过控制居民源排放来减轻咸阳市PM2.5污染。  相似文献   

8.
收集了太原市2014-2018年秋冬季(10月-翌年2月) PM2.5、SO2、NO2和CO浓度数据以及对应时刻气象资料,基于逐日PM2.5在16:00-01:00时的变化将其分为消散过程、慢速积累过程和快速积累过程,从PM2.5积累的角度分析了太原市PM2.5的污染特征及影响因素,并将其运用于重污染天气形成过程的探讨.结果表明,太原秋冬季慢速积累过程占比最高为44%,快速积累过程占27%,消散过程占29%.10月以慢速积累为主占比超过60%,11和12月快速积累占比最高接近40%,1、2月慢速积累再次占主导地位;快速积累过程占比最高的年份为2014年和2016年均超过35%,慢速积累和消散占比最高的年份均为2017年.慢速积累状态下,二次污染物的生成有助于PM2.5的积累速率增加;快速积累状态下一次污染物对PM2.5积累速率影响更明显;发生快速积累时,来自临汾、晋城等东南方向区域输送显著增加.太原市重污染天气的形成过程以慢速积累为主,占比77%.重污染天气下,市区多以硫酸盐和硝酸盐复合污染为主,而郊区以硝酸盐污染为主.  相似文献   

9.
邯郸市大气颗粒物污染特征的监测研究   总被引:6,自引:1,他引:5  
使用振荡天平颗粒物在线监测仪连续监测了邯郸市PM10和PM2.5浓度,分析了2012年7月31日—12月2日4个月内PM10、PM2.5的浓度水平、时变规律和PM2.5/PM10的变化情况.结果表明,监测时段内PM10和PM2.5的日均浓度平均值分别为208.4 μg·m-3和99.1 μg·m-3,是国家二级标准的1.4倍和1.3倍;浓度超标的天数占总观测天数的61.6%和60.0%,其污染程度与北京、天津相当,属污染较严重的地区.PM2.5/PM10在19.3%~89.8%之间周期性波动,平均值为49.4%,接近北方城市的平均水平.PM10和PM2.5的浓度变化具有很好的正相关性;日均值在4个月中呈现明显的周期性变化和月际波动,10、11月的PM10和PM2.5浓度变化剧烈且大大高于8、9月份.PM10和PM2.5浓度一天中小时均值的变化呈同步的双峰型分布,最高值出现在9:00和20:00左右,最低值出现在15:00~17:00之间.本研究系统分析了夏秋季节邯郸市大气颗粒物污染状况,以期为当地颗粒物污染的控制提供科学依据.  相似文献   

10.
长三角地区2015年大气重污染特征及其影响因素   总被引:4,自引:0,他引:4  
基于2015年长三角地区129个环境空气质量监测站的空气质量指数(AQI)及主要大气污染物浓度数据,结合气象资料和HYSPLIT后向轨迹模式,探究长三角地区大气重污染的时间变化和空间集聚特征,并深入分析气象条件和区域传输对重污染过程发生和维持的影响.结果表明,2015年长三角地区各城市平均出现AQI超过200的重污染天气共8 d,重污染频率为2.01%,PM2.5作为首要污染物出现频次最多.从时间变化看,重污染主要分布在1月和12月;从空间分布看,北部地区重污染相比南部地区更为严重,徐州和常州市出现频率最高.选取典型重污染过程1月9—11日(纬向扩散型)、1月24—26日(经向扩散型)和12月20—26日(两种模式相结合的重污染天气)进行成因分析,发现长三角地区重污染天气主要受到西北风向、低风速、高湿度和逆温层的影响,导致大气污染物积累且不易扩散.基于HYSPLIT的大气传输轨迹及频率分布表明,来自西北方向的气流对江苏北部地区的污染输送特征有着显著影响.  相似文献   

11.
利用2011年5月11—12日辽宁沙尘天气过程的相关资料,分析了沙尘天气对不同粒径颗粒物及空气质量的影响及此次沙尘过程的天气成因.结果表明:沙尘天气发生前后可吸入颗粒物PM10、PM2.5和PM1的浓度变化很大,沈阳、鞍山、本溪和丹东4城市PM10、PM2.5的小时浓度最大值都增大了1.5~20倍;粗粒子PM(2.5~10)的数量浓度分别增加了30~41倍,质量浓度分别增加了27~30倍;细粒子PM(1~2.5)的质量浓度分别增加了30~35倍,数量浓度分别增加了15~30倍;微粒子的数量浓度和质量浓度各城市表现不同,沈阳微粒子的数量浓度和质量浓度最大值增大了3倍和5倍,而鞍山PM1的数量浓度和质量浓度分别减少了50%和10%.受蒙古气旋的影响内蒙古地区产生大风降温天气,大风将内蒙古地区的沙尘带到高空并随西风带向东移动进入辽宁,由于辽宁地区风速比较小,造成了辽宁大部分地区的浮尘天气,并对辽宁各地空气质量造成了严重影响,除丹东外辽宁其他13个城市空气质量都达到了轻微污染到重度污染的级别,铁岭、阜新、沈阳和抚顺的污染指数分别超过了300,达到了重度污染的级别.  相似文献   

12.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

13.
成都平原大气颗粒物中无机水溶性离子污染特征   总被引:13,自引:6,他引:7  
蒋燕  贺光艳  罗彬  陈建文  王斌  杜云松  杜明 《环境科学》2016,37(8):2863-2870
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素.  相似文献   

14.
嵊泗地区大气PM2.5中汞形态污染及其与碳组分的关系   总被引:1,自引:1,他引:0  
2014年11月~2015年8月在舟山群岛嵊泗岛上设定采样点采集了4个不同季节的大气PM_(2.5)样品.采用微波消解-原子荧光光度法测定了颗粒物中汞及其不同形态,采用热/光碳分析仪分析样品中有机碳(OC)和元素碳(EC).结果表明,嵊泗岛上大气PM_(2.5)中总汞(PBM)的质量浓度范围为0.02~1.25 ng·m-3,而单位质量颗粒物中汞的含量为(12.46±18.79)μg·g-1,比陆地城市PM_(2.5)的汞含量偏高.ANOVA分析结果表明,PBM的季节变化规律为:秋季春季冬季夏季.春秋季节汞的质量浓度较高,这表明春秋季节嵊泗地区的汞可能受到外来输送的影响.此外,大气PM_(2.5)中不同形态汞的分析结果表明,惰性汞(RPM)的比例最高,占53.1%.OC、EC均与PBM显示出明显的正相关性,表明碳组分有利于汞的气-粒转化.由于OC/EC比值间接反映了大气光氧化能力的高低,而OC/EC与可溶盐酸汞(HPM)呈显著正相关,这说明高浓度HPM主要来自于大气中的气-粒转化.char-EC/soot-EC与形态汞呈现显著负相关,表明嵊泗地区的大气颗粒汞主要受外界源输入的影响.  相似文献   

15.
中国典型城市群PM2.5污染特征研究进展   总被引:5,自引:2,他引:3       下载免费PDF全文
为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地壳元素等的整体特征,并在城市群间进行对比分析.结果表明:①3个城市群的ρ(PM2.5)高低顺序依次为京津冀城市群>川渝城市群>长三角城市群,长距离传输使PM2.5污染成为京津冀城市群、长三角城市群与川渝城市群面临的共同问题.②3个城市群的PM2.5中均以SNA和OC为主,尽管ρ(PM2.5)水平有下降趋势,但个别污染物(如SNA)略呈上升趋势.③京津冀城市群与川渝城市群的ρ(OC)接近,并且均高于长三角城市群的80%,较高的ρ(OC)/ρ(EC)反映我国城市群普遍存在SOC污染.④各城市群PM2.5监测网(如监测时间和采样方法)发展水平迥异,城市群之间的相互影响和传输机制尚不清楚.建议今后的研究向以下几个方面扩展:①对城郊乡村等大气背景点,以及水库、湖泊等地化循环的重要源汇区域开展研究.②针对同一区域开展采样时段更长且研究方法和分析手段上保持一致的研究.③借用国外经验公式时需考虑我国国情,对基础研究方法开展一系列优化,建立符合我国国情的标准化研究方法.   相似文献   

16.
为探究临沂市PM_(2.5)和PM_(10)中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM_(2.5)和PM_(10)进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM_(2.5)和PM_(10)中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM_(2.5)中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧源、扬尘源、机动车排放和工业源,贡献率分别为22.64%、 7.49%、 41.22%、 14.71%和13.94%.PM_(10)中元素来源主要有扬尘源、燃煤和铜冶炼的混合源、机动车排放和工业源,贡献率分别为55.47%、 19.80%、 7.48%和12.83%.由此可见,扬尘源和燃煤与铜冶炼的混合源是临沂市颗粒物污染形成过程中的重要源类.  相似文献   

17.
城市PM2.5健康损害评估研究   总被引:4,自引:1,他引:3  
刘帅  宋国君 《环境科学学报》2016,36(4):1468-1476
参考美国Ben MAP软件,提出城市PM_(2.5)健康损害评估的基本框架,并就评估方法和参数使用中的关键问题进行了论述,包括人群健康损害评估指标的确定、空间尺度和时间尺度的选择、健康终点的界定、人群年龄结构的划分、比较的基准的确定,以及"剂量-反应"关系参数和生命价值参数的选择等.本文收集和整理了2014年北京市空气质量监测点PM_(2.5)浓度监测数据及暴露人口、基期死亡率等数据,运用"向标准靠拢(Rollback to Standard)"的方法,估算北京市PM_(2.5)达到空气质量标准情景下的浓度值,以此作为比较的基准,使用美国Ben MAP数据库收录的"剂量-反应"关系参数,分别基于"工资-风险"法模型和人力资本法模型估计生命价值参数,代入本文城市PM_(2.5)健康损害评估的基本框架,计算2014年北京市PM_(2.5)对人群健康的损害.  相似文献   

18.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

19.
运用连续颗粒物采样仪(URG Model 2000-01J)对贵阳市城区大气颗粒物PM2.5进行了连续3个月(9~11月)的采集与分析,探讨了PM2.5的浓度分布特征、气象条件的影响。结果显示,贵阳市大气颗粒物PM2.5的平均质量浓度为53±27μg/m3,变化范围为3.7~186μg/m3;初步推断大气颗粒物PM2.5的污染来源主要是燃料燃烧、生物质燃烧、汽车尾气等人为源;相对湿度、风速、风向、温度等气象条件是影响大气颗粒物浓度及分布的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号