首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Urban areas constitute major pollution sources due to anthropogenic activities located in these areas. Among the legislated air pollutants, the particulate matter with an aerodynamic diameter less than or equal to 10 microns (PM10) and polycyclic aromatic hydrocarbons (PAH) are controlled under Directive 2008/50/EC and Directive 2004/107/EC, respectively due to their adverse health effects. A study was carried out at four urban and rural Spanish areas during the warm and cold seasons in 2008-2009 to quantify 19 PAH associated with the atmospheric PM10 by gas chromatography-mass spectrometry-mass spectrometry detection (GC-MS-MS) with the internal standard method. The particle-bound composition of the analysed PAH was 5 and 10 times greater in industrial and urban areas, respectively when compared to those measured in rural areas. The highest PAH concentrations during the cold period were possibly due to the additional contribution of domestic heating sources and meteorological conditions such as low temperature and solar irradiation. The use of molecular diagnostic ratios indicated that the possible, major PAH pollution sources in the most polluted areas were pyrogenic sources, mainly attributed to petroleum combustion sources (motor vehicle emissions and crude oil combustion). Petrogenic sources related to evaporative emissions also seemed to contribute in the most polluted area during the warm period. Those dates with high carcinogenic character according to the benzo(a)pyrene equivalent (BaP-eq) were also possibly attributed to petroleum combustion sources.  相似文献   

2.
Polycyclic Aromatic Hydrocarbon (PAH) concentrations were measured in Total Suspended Particulate Matter (TSPM) from December 2005 to August 2006 at Nunhai, an industrial site in Agra (India). Particulate matter samples were collected on glass fibre filters using High Volume Sampler (HVS-430) and were extracted using dichloromethane with ultrasonication and analyzed by GC. Total PAH concentration varies between 0.04 to 2.5 microg m(-3) accounting only 1.6 x 10(-3)% of TSPM. The mass distribution in air was dominated by high molecular weight DbA, BghiP, BaP, BkF and IP. Combustion PAH (CPAH) except BeP represents 58% of the total PAH mass and IARC classified total carcinogenic PAH accounting 63% of TPAH concentration. Correlation studies between PAH revealed the contribution of low molecular weight PAH was mainly due to primary emission from diesel exhaust while high molecular weight PAH were formed during combustion. The presence of specific tracers and calculation of characteristic molecular diagnostic ratios Fla/(Fla + Pyr), BaP/(BaP + Chy), BaA/(BaA + Chy), IP/(IP + BghiP), BaP/BghiP and IP/BghiP) were used to identify the sources of the emissions of PAHs in the atmospheric samples. Seasonal variation in atmospheric PAH showed four fold increase in winter concentration than summer. The BaP and relative BaP amount calculated from the measurements suggested that photo-oxidation may also be responsible for the variation in PAH concentrations during winter and summer. Seasonal trends in atmospheric PAH concentration in the study area were influenced by fossil fuel usage for domestic heating, boundary height and temperature.  相似文献   

3.
Systematic sampling and analysis were performed to investigate the dynamics and the origin of suspended particulate matter smaller than 2.5 μm in diameter (PM(2.5)), in Beijing, China from 2005 to 2008. Identifying the source of PM(2.5) was the main goal of this project, which was funded by the German Research Foundation (DFG). The concentrations of 19 elements, black carbon (BC) and the total mass in 158 weekly PM(2.5) samples were measured. The statistical evaluation of the data from factor analysis (FA) identifies four main sources responsible for PM(2.5) in Beijing: (1) a combination of long-range transport geogenic soil particles, geogenic-like particles from construction sites and the anthropogenic emissions from steel factories; (2) road traffic, industry emissions and domestic heating; (3) local re-suspended soil particles; (4) re-suspended particles from refuse disposal/landfills and uncontrolled dumped waste. Special attention has been paid to seven high concentration "episodes", which were further analyzed by FA, enrichment factor analysis (EF), elemental signatures and backward-trajectory analysis. These results suggest that long-range transport soil particles contribute much to the high concentration of PM(2.5) during dust days. This is supported by mineral analysis which showed a clear imprint of component in PM(2.5). Furthermore, the ratios of Mg/Al have been proved to be a good signature to trace back different source areas. The Pb/Ti ratio allows the distinction between periods of predominant anthropogenic and geogenic sources during high concentration episodes. Backward-trajectory analysis clearly shows the origins of these episodes, which partly corroborate the FA and EF results. This study is only a small contribution to the understanding of the meteorological and source driven dynamics of PM(2.5) concentrations.  相似文献   

4.
Mining has been carried out upstream of Miyun Reservoir, Beijing, for several decades, and has caused metal emissions to the environment, threatening human health. We conducted a soil survey to assess metal contamination in this area and to determine distribution of heavy metals in the particle size. We attempted to determine the possible sources of the metals and the significance of metals in the fine particle fractions to soil risk assessments. Thirty-four soil samples were collected, and eight samples were partitioned into seven size fractions. Most of the metal concentrations in the soils were higher than the background levels in Beijing, and the metal concentrations and total organic matter (TOC) contents generally increased as the particle size decreased. Each metal except Hg significantly positively correlated with the TOC. The metals in the coarse-grained soils were mainly derived from parent materials, but the metals in the fine fractions were mostly anthropogenic. Statistical analyses showed that there were three metal sources: Cd, Cu, Hg, Pb, and Zn had anthropogenic sources; Co, Cr, Ni, and V had mixed anthropogenic and natural sources; and As and Be had natural sources. The trace metals were primarily in the clay and fine silt fractions, and they might pose health risks through the inhalation of resuspended soil particles (PM10 and PM2.5). The elevated accumulation factors, enrichment factors, and ecological risk indices for the metals in the fine fractions suggest that risk assessments should be based on the fine particle size.  相似文献   

5.
Total suspended particle samples and gas phase samples were collected at three representative sampling sites in the southeastern suburb of Beijing from March 2005 to January 2006. The samples were analyzed for 16 US EPA priority PAHs using GC/MS. Concentrations of Sigma PAHs in particle and gas phases were 0.21-1.18 x 10(3) ng m(-3) and 9.5 x 10(2) ng-1.03 x 10(5) ng m(-3), respectively. PAH concentrations displayed seasonal variation in the order of winter>spring>autumn>summer for particle phase, and winter>autumn>summer>spring for gas phase. Partial correlation analysis indicates that PAH concentrations in particle phase are negatively correlated with temperature and positively correlated with air pollution index of SO(2). No significant correlation is observed between gas phase PAHs and the auxiliary parameters. Sources of PAH are identified through principal component analysis, and source contributions are estimated through multiple linear regression. Major sources of atmospheric PAHs in the study area include coal combustion, coke industry, vehicular emission and natural gas combustion.  相似文献   

6.
15 road and 14 soil dust samples were collected from an oilfield city, Dongying, from 11/2009-4/2010 and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS) for V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb within PM(2.5), PM(10) and PM(100) fractions synchronously. Metal concentrations, sources and human health risk were studied. Results showed that both soil and road dust exhibited higher values for Mn and Zn and lower values for Co and Cd for the three fractions. Mass concentration ratios of PM(2.5)/PM(10) and PM(10)/PM(100) for metals in road and soil dust indicate that most of the heavy metals tend to concentrate in fine particles. Geoaccumulation index and enrichment factors analysis showed that Cu, Zn and Cd exhibited moderate or heavy contamination and significant enrichment, indicating the influence of anthropogenic sources. Vanadium, Cr, Mn and Co were mostly not enriched and were mainly influenced by crustal sources. For Ni, As and Pb, they ranged from not enriched to moderately enriched and were influenced by both crustal materials and anthropogenic sources. The conclusions were confirmed by multivariate analysis methods. Principle component analysis revealed that the major sources were vehicle emission, industrial activities, coal combustion, agricultural activities and crustal materials. The risk assessment results indicated that metal ingestion appeared to be the main exposure route followed by dermal contact. The most likely cause for cancer and other health risks are both the fine particles of soil and road dusts.  相似文献   

7.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

8.
Ambient gas and particle phase samples were collected during two sampling periods from a residential area of an industrialized city, Kocaeli, Turkey. The sampling occurred during winter months when structures were being heated, and summer months when structures were not being heated. Σ(13)PAH (gas + particle) concentrations ranged between 6.2 ng m(-3) (DahA) and 98.6 ng m(-3) (Phe) in the heating (winter) period and 3.0 ng m(-3) (BaA) and 35.1 ng m(-3) (Phe) in the non-heating (summer) period. Phe, Flt and Pyr were found to be at high concentrations in both sampling periods. Winter time to summer time concentration ratios for individual ambient PAH concentration ratios ranged between 1.2 (DahA) and 17.5 (Flu), indicating the effect of the emissions from residential heating on measured concentrations of PAHs, but great industrial plants and the only incinerator facility of Turkey are other important pollution sources around the city. Temperature dependence of gas phase PAHs was investigated using the Clausius-Clapeyron equation. A high slope obtained (5069.7) indicated the effect of the local sources on measured gas phase PAHs. Correlation of the supercooled vapor pressure (P) with the gas particle partitioning coefficient (K(p)) and particle phase fraction was also evaluated. The relationship between the meteorological parameters and individual PAH (gas + particle) concentrations was investigated further by multiple linear regression analysis. It was found that the temperature had a significant effect on all of the measured PAH concentrations, while the effects of the wind speed and direction were not significant on the individual PAHs. On the other hand, PAH concentrations showed a strong linear relationship with the ventilation coefficient (VC) which showed the influence of local sources on measured PAHs. Benzo[a]pyrene toxic equivalent (BaP(eq.)) concentrations were used for health risk assessment purposes. The winter period risk level (2.92 × 10(-3)) due to the respiratory exposure to PAHs was found to be almost 3 times higher than in the summer period (1.15 × 10(-3)).  相似文献   

9.
Aerosol samples of PM10 and PM2.5 are collected in summertime at four monitoring sites in Guangzhou, China. The concentrations of organic and elemental carbons (OC/EC), inorganic ions, and elements in PM10 and PM2.5 are also quantified. Our study aims to: (1) characterize the particulate concentrations and associated chemical species in urban atmosphere (2) identify the potential sources and estimate their apportionment. The results show that average concentration of PM2.5 (97.54 μg m−3) in Guangzhou significantly exceeds the National Ambient Air Quality Standard (NAAQS) 24-h average of 65 μg m−3. OC, EC, Sulfate, ammonium, K, V, Ni, Cu, Zn, Pb, As, Cd and Se are mainly in PM2.5 fraction of particles, while chloride, nitrate, Na, Mg, Al, Fe, Ca, Ti and Mn are mainly in PM2.5-10 fraction. The major components such as sulfate, OC and EC account for about 70–90% of the particulate mass. Enrichment factors (EF) for elements are calculated to indicate that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) are highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Ambient and source data are used in the multi-variable linearly regression analysis for source identification and apportionment, indicating that major sources and their apportionments of ambient particulate aerosols in Guangzhou are vehicle exhaust by 38.4% and coal combustion by 26.0%, respetively.  相似文献   

10.
Source apportionment study was performed, applying principal component analysis to the results of 221 chemical analyses of PM10 and PM2.5 samples collected daily from the industrial (but low traffic) Spanish town of Puertollano over a 14-month period during 2004-2005. Results reveal compositional variations attributable to different mixtures of natural and anthropogenic materials, mainly soil and rock dust (crustal), marine salt (only in PM10), petrochemical refinery emissions, and particles attributed to the combustion of local coal, which is unusually rich in Pb and Sb. During the study period there were 34 pollution episodes when PM10 exceeded 50 tg m(-3), mostly due to winter air temperature inversions, regional atmospheric stagnation, or African dust incursions (North African, NAF days: usually in summer). Whereas the crustal component during NAF episodes averaged 52% with a PM2.5/PM10 ratio of 0.54, this dropped to 29% and a PM2.5/PM10 of 0.67 during non-NAF days when anthropogenic materials predominated. Abnormally enhanced concentrations of pathfinder metallic trace elements provide additional evidence for source apportionment: thus aerosols with raised levels of Pb and Sb are associated with local coal combustion, Ni and V can be linked to petrochemical PM emissions, and Ti, Mn, Rb, and Ce are particularly characteristic of crustal dust incursions.  相似文献   

11.
Malaysia has experienced several haze events since the 1980s as a consequence of the transboundary movement of air pollutants emitted from forest fires and open burning activities. Hazy episodes can result from local activities and be categorized as "localized haze". General probability distributions (i.e., gamma and log-normal) were chosen to analyze the PM(10) concentrations data at two different types of locations in Malaysia: industrial (Johor Bahru and Nilai) and residential (Kota Kinabalu and Kuantan). These areas were chosen based on their frequently high PM(10) concentration readings. The best models representing the areas were chosen based on their performance indicator values. The best distributions provided the probability of exceedances and the return period between the actual and predicted concentrations based on the threshold limit given by the Malaysian Ambient Air Quality Guidelines (24-h average of 150 μg/m(3)) for PM(10) concentrations. The short-term prediction for PM(10) exceedances in 14 days was obtained using the autoregressive model.  相似文献   

12.
Particle-bound PAHs were measured at three sites in southeastern Spain (an urban background location, a suburban-industrial site in the vicinity of two cement plants and a rural area) in order to investigate the influence of the type of location on PAH concentrations. A clear influence of cement production on particulate PAH levels could not be established since for the urban background and suburban-industrial sites the average concentrations of total PAHs in the PM2.5 fraction were very similar (1.085 and 1.151 ng m(-3), respectively), with benzo[b+k]fluoranthene and chrysene as the predominant compounds. Diagnostic ratios, used to identify PAH emission sources, pointed to traffic as the main source of particulate PAH at both locations. As expected, PAH levels at the rural site were significantly lower (0.408 ng m(-3) in the PM10 fraction) due to increasing distance from the emission sources. PAH seasonal variations at the urban background and suburban-industrial sites were the same as reported in many previous studies. Average winter to summer ratios for total PAHs were 4.4 and 4.9 for the urban background and industrial sites, in that order. This seasonal cycle could be partially explained by the higher temperature and solar radiation during summer enhancing PAH evaporation from the particulate phase and PAH photochemical degradation, respectively. The study of PAH distribution between the fine and coarse fraction at the urban site revealed that on average around 80% of total PAHs were associated with fine particles.  相似文献   

13.
The aim of the present study was to evaluate the polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) levels in PM(10) and PM(2.5), at one rural and three urban sites in the Cantabria region (northern Spain). From all of these pollutants, benzo(a)pyrene is regulated by the EU air quality directives; its target value (1?ng/m(3)) was not exceeded. The concentration values of the studied organic pollutants at the studied sites are in the range of those obtained at other European sites. A comparison between the rural-urban stations was developed: (a) PAH concentration values were lower in the rural site (except for fluorene). Therefore, the contribution of local sources to the urban levels of PAHs seems relevant. Results from the coefficient of divergence show that the urban PAH levels are influenced by different local emission sources. (b) PCB rural concentration values were higher than those found at urban sites. Because no local sources of PCBs were identified in the rural site, the contribution of more distant emission sources (about 40?km) to the PCB levels is considered to be the most important; the long-range transport of PCBs does not seem to be significant. Additionally, local PAH tracers were identified by a triangular diagram: higher molecular weight PAHs in Reinosa, naphthalene in Santander and anthracene/pyrene in Castro Urdiales. A preliminary PAH source apportionment study in the urban sites was conducted by means of diagnostic ratios. The ratios are similar to those reported in areas affected by traffic emissions; they also suggest an industrial emission source at Reinosa.  相似文献   

14.
Chemical composition of ambient particulate matter and redox activity   总被引:1,自引:0,他引:1  
Exposure to ambient particulate matter (PM) has been associated with a number of adverse health effects. Increasing studies have suggested that such adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. The study aimed to assess physical characteristics and chemical compositions of PM and to correlate the results to their redox activity. PM2.5 (mass aerodynamic diameter ≤2.5 μm) and ultrafine particles (UFPs, mass media aerodynamic diameter <0.1 μm) were collected in an urban area, which had heavy traffic and represented ambient air pollution associated with vehicle exhaust. Background samples were collected in a rural area, with low traffic flow. Organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), and metals were analyzed. The dithiothreitol activity assay was used to measure the redox activity of PM. Results showed that UFPs have higher concentrations of OC, EC, and PAHs than those of PM2.5. Several metals, including Fe, Cu, Zn, Ti, Pb, and Mn, were detected. Among them, Cu had the highest concentrations, followed by Fe and Zn. Organic carbon constituted 22.8% to 59.7% of the content on the surface of PM2.5 and UFPs. Our results showed higher redox activity on a per PM mass basis for UFPs as compared to PM2.5. Linear multivariable regression analyses showed that redox activity highly correlated with PAH concentrations and organic compounds, and insignificantly correlated with EC and metals, except soluble Fe, which increased redox activity in particle suspension due to the presence of ROS.  相似文献   

15.
A study has been carried out to assess the contribution of Polycyclic Aromatic Hydrocarbons (PAHs) from asphalt plant operation, utilising Benzo(a)pyrene (BaP) as a marker for PAHs, to the background air concentration around asphalt plants in the UK. The purpose behind this assessment was to determine whether the use of published BaP emission factors based on the US Environmental Protection Agency (EPA) methodology is appropriate in the context of the UK, especially as the EPA methodology does not give BaP emission factors for all activities. The study also aimed to improve the overall understanding of BaP emissions from asphalt plants in the UK, and determine whether site location and operation is likely to influence the contribution of PAHs to ambient air quality. In order to establish whether the use of US EPA emissions factors is appropriate, the study has compared the BaP emissions measured and calculated emissions rates from two UK sites with those estimated using US EPA emission factors. A dispersion modelling exercise was carried out to show the BaP contribution to ambient air around each site. This study showed that, as the US EPA methodology does not provide factors for all emission sources on asphalt plants, their use may give rise to over- or under-estimations, particularly where sources of BaP are temperature dependent. However, the contribution of both the estimated and measured BaP concentrations to environmental concentration were low, averaging about 0.05 ng m(-3) at the boundary of the sites, which is well below the UK BaP assessment threshold of 0.25 ng m(-3). Therefore, BaP concentrations, and hence PAH concentrations, from similar asphalt plant operations are unlikely to contribute negatively to ambient air quality.  相似文献   

16.
PAH and PCB in soils of Switzerland--status and critical review   总被引:1,自引:0,他引:1  
The surface soil concentrations (0-20 cm) of the Swiss soil monitoring network (NABO) with 105 observation sites representing all major land use types ranged for the sum of 16 EPA PAH (PAH(16)) from 32 to 8465 microg kg(-1) (median 163 microg kg(-1)), for benzo[a]pyrene (BaP) from 0.5 to 1129 microg kg(-1) (median 13 microg kg(-1)) and for the sum of seven IRMM PCB (PCB(7)) from 0.5 to 12 microg kg(-1) (median 1.6 microg kg(-1)). The legal guide values of Switzerland were exceeded for PAH(16) at only three and for BaP at two sites. The PCB(7) concentrations were clearly below any assessment value. The concentration ranges were overlapping between all land use types. Tendencies for higher concentrations were observed at urban and viticulture sites. The overall measurement precision at repeatability conditions ranged from 1 to 37% RSD for PAH(16), BaP and PCB(7). The median bias for the chemical analysis was around zero for PAH(16), +5% for BaP and -5% for PCB(7) with spreads ranging from less than -20% up to more than +30%. The PAH profiles were clearly dominated by phenanthrene. Stratification by land use revealed a prevalence of benzo[a]pyrene at urban and naphthalene at conservation sites. For PCB, the general congener rank order was PCB no. 153 > 138 > 101 > 180. From a broad correlation screening only PAH(16)/BaP (r = 0.88**) were relevant for practical soil protection. The extensive comparison with other studies was severely biased by the lack of harmonisation, especially concerning sampling depth, sampling support, analytical method and the sum calculation procedure.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

18.
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at eight sampling sites during cold periods where heating is used (heating period) (February to March, 2005) and warm periods where heating is not required (non-heating periods) (August to September 2006) in the urban area of Anshan, an iron and steel city in northeastern China. Eleven PAH species were measured using GC-MS. The total average concentrations of PAHs ranged from 46.14 to 385.60 ng m(-3) in the heating period and from 5.28 to 146.40 ng m(-3) in the non-heating period. The lowest concentration of ∑PAHs was observed at Qianshan, a monitoring site far from the city and industrial area, and the highest concentration occurred in the site located at the factory area of Anshan Iron and Steel Incorporation. Moreover, ambient PAH profiles were studied and high molecular weight PAH (including 4-6 rings) species occurred in the high fractions. Toxic equivalent factors analysis gave the potential carcinogenic risks in Anshan. For the heating sampling period, BaP equivalent concentration is in the range of 41.98 to 220.83 ng m(-3), and 9.23 to 126.00 ng m(-3) for the non-heating sampling period. By diagnostic ratio analysis, traffic emission and combustion (coal or biomass) were potential sources for PAHs in Anshan. Finally, PCA results indicated the major sources were vehicle emission, steel industry emission, and coal combustion for both heating and non-heating seasons, which agreed with the results from the diagnostic ratio analysis.  相似文献   

19.
We report on the CuPbZn content of PM10 and PM2.5 samples collected from three sites (urban T0, suburban T1 and rural T2) during the Mexico City MILAGRO campaign of March 2006. Daytime city centre concentrations of summation operator CuZnPb(PM10) were much higher (T0 > 450 ng m(-3)) than at the suburban site (T1 < 200 ng m(-3)). Rural site (T2) summation operator CuZnPb(PM10) concentrations exceeded 50 ng m(-3) when influenced by the megacity plume but dropped to 10 ng m(-3) during clean northerly winds. Nocturnal metal concentrations more than doubled at T0, as pollutants became trapped in the nightly inversion layer, but decreased at the rural site. Transient spikes in concentrations of different metals, e.g. a "copper event" at T0 (CuPM10 281 ng m(-3)) and "zinc event" at T1 (ZnPM10 1481 ng m(-3)) on the night of March 7-8, demonstrate how industrial pollution sources produce localised chemical inhomogeneities in the city atmosphere. Most metal aerosols are <2.5 microm and SEM study demonstrates the dominance of Fe, Ti, Ba, Cu, Pb and Zn (and lesser Sn, Mo, Sb, W, Ni, V, As, Bi) in metalliferous particles that have shapes including spherical condensates, efflorescent CuZnClS particles, cindery Zn, and Cu wire. Metal aerosol concentrations do not change in concert with PM10 mass, which is more influenced by wind resuspension than industrial emissions. Metalliferous particles can induce cell damage, and PM composition is probably more important than PM mass, with respect to negative health effects, so that better monitoring and control of industrial emissions would likely produce significant improvements in air quality.  相似文献   

20.
Fine particles (PM2.5) were sampled indoors and outdoors at 40 sampling sites; in ten classrooms in five schools, at ten preschools and 20 non-smoking homes, in three communities in Stockholm, Sweden, during nine 2-week periods. Each sampling site was sampled twice, once during winter and once during spring. The samples were analysed for elemental concentrations using X-ray fluorescence (XRF) spectroscopy. In all locations significantly higher outdoor concentrations were found for elements that are related to long-range transported air masses (S, Ni, Br and Pb), while only Ti was higher indoors in all locations. Similar differences for S, Br and Pb were found in both seasons for homes and schools. In preschools different seasonal patterns were seen for the long-range transported elements S, Br and Pb and the crustal elements Ti, Mn and Fe. The indoor/outdoor ratios for S and Pb suggest an outdoor PM2.5 particle net infiltration of about 0.6 in these buildings. The community located 25 km from the city centre had significantly lower outdoor concentrations of elements of crustal or traffic origin compared with the two central communities, but had similar levels of long-range transported elements. Significant correlations were found between PM2.5 and most elements outdoors (rs = 0.45-0.90). Copper levels were found to correlate well (rs = 0.64-0.91) to the traffic marker NO2 during both winter and spring in all locations. Copper may be a suitable elemental marker for traffic-related aerosols in health studies in areas without other significant outdoor Cu sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号