首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to investigate the pollution load index, fraction distributions, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils collected from a Pb/Zn mine in Chenzhou City, China. The samples were analyzed using Leleyter and Probst’s sequential extraction procedures. Total metal concentrations including Pb, Cd, Cu, and Zn exceeded the maximum permissible limits for soils set by the Ministry of Environmental Protection of China, and the order of the pollution index was Cd > Zn > Pb > Cu, indicating that the soils from both sites seriously suffered from heavy metal pollution, especially Cd. The sums of metal fractions were in agreement with the total contents of heavy metals. However, there were significant differences in fraction distributions of heavy metals in garden and paddy soils. The residual fractions of heavy metals were the predominant form with 43.0% for Pb, 32.3% for Cd, 33.5% for Cu, and 44.2% for Zn in garden soil, while 51.6% for Pb, 40.4% for Cd, 40.3% for Cu, and 40.9% for Zn in paddy soil. Furthermore, the proportions of water-soluble and exchangeable fractions extracted by the selected analytical methods were the lowest among all fractions. On the basis of the speciation of heavy metals, the mobility factor values of heavy metals have the following order: Cd (25.2–19.8%) > Cu (22.6–6.3%) > Zn (9.6–6.0%) > Pb (6.7–2.5%) in both contaminated soils.  相似文献   

2.
某铀尾矿库周围农田土壤重金属污染潜在生态风险评价   总被引:6,自引:1,他引:5  
为能够定量评价铀尾矿库周围农田土壤重金属污染程度及其潜在生态危害性,采用Hakanson潜在生态风险指数法对土壤中重金属进行综合污染评价。结果表明,铀尾矿库周围部分农田土壤中重金属Cd、Ni、As、Cu、Hg、Zn含量存在积累和超标情况,尤以Cd的污染最严重,Ni、As次之;Pb、Cr含量能够满足标准限值要求。潜在生态风险评价结果显示,铀尾矿库周围农田土壤重金属潜在生态风险较高,主要潜在生态风险因子为Cd,其次是Hg、As,Cr、Pb、Ni、Cu、Zn并不构成潜在生态风险。铀尾矿库周围农田土壤中较高水平的Cd在构成环境污染的同时,也构成了较严重的生态危害,应加强对重金属Cd、Hg的生态风险防治。  相似文献   

3.
Four crop plants Oryza sativa (rice), Solanum melongena (brinjal), Spinacea oleracea (spinach) and Raphanus sativus (radish) were grown to study the impact of secondary treated municipal waste water irrigation. These plants were grown in three plots each of 0.5 ha, and irrigated with secondary treated waste water from a sewage treatment plant. Sludge from the same sewage treatment plant was applied as manure. Cultivated plants were analyzed for accumulation of heavy metals and pesticides. Results revealed the accumulation of six heavy metals cadmium (Cd), chromium (Cr), iron (Fe), copper (Cu), nickel (Ni), and zinc (Zn) as well as two pesticides [1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane; DDT] and benzene hexa chloride (BHC). Order of the plants for the extent of bioaccumulation was S. oleracea > R. sativus > S. melongena > O. sativa. The study has shown the secondary treated waste water can be a source of contamination to the soil and plants.  相似文献   

4.
水稻重金属含量与土壤质量的关系   总被引:27,自引:2,他引:27       下载免费PDF全文
根据“淮安市绿色食品基地调查以及相关研究”课题资料 ,分析了水稻中重金属含量与其土壤质量的关系。结果表明 ,重金属含量在水稻中的分布是 :根 >茎叶 >籽粒 ;水稻籽粒对重金属的吸收特点因其元素不同而差异较大 ,重金属元素被水稻糙米吸收的程度为 :砷 <镉 <汞 <铅 <锰 <铬 <铜 <锌 ;在糙米中检出的重金属铜和铬的含量与土壤中铜和铬的含量呈显著性相关关系 ,铅、锌、锰的含量与土壤中铅、锌、锰的含量相关关系不显著  相似文献   

5.
The availability of the five chemical fractions, i.e., exchangeable (F1), carbonate-bound (F2), Fe/Mn oxide-combined (F3), organic matter-complexed (F4), residual (F5), of three heavy metals (Cu, Zn, and Cd), has been investigated by way of a sequential extraction technique based on the characteristics of the coastal soils developed from alluvial deposits, in order to analyze the relationship of the formation and development of coastal soils. The results showed that F1 and F5 of Cu, Zn, and Cd accounted dominantly for 9.11%, 2.74%, and 20.37%, and for 39.49%, 45.18%, and 32.43% of total heavy metal contents, respectively, indicating the order of availability and mobility: Cd > Cu > Zn. F2, F3, and F4 of HMs also featured prominently in the behaviors of heavy metals. Random measurement errors from both sampling and analysis were demonstrated by SAX to be well within the control target of 20% and, therefore, of no impediment to the geochemical interpretation of the data. Significant positive correlation was found between certain fractions of heavy metals and some soil properties. Some negative correlation was also found. The findings were helpful to the soil remediation, fertility adjustment, and plant cultivation.  相似文献   

6.
采用现场采样与室内测试方法测定了会泽某铅锌矿周边农田土壤中Cd、As、Pb、Cr、Cu、Zn、Ni的含量,利用地积累指数法、潜在生态指数法对其土壤环境质量进行了评价,并应用US EPA推荐的健康风险评价法对重金属的健康风险进行了初步评价。结果表明,7种重金属均存在不同程度的富集或污染。多种重金属潜在生态风险指数属于中等及以上的风险状态,重金属潜在生态风险指数排序为CdPbAsCuNiZnCr。7种重金属在3种暴露途径下对儿童的非致癌健康风险均大于成人,但对成人、儿童均不存在显著的非致癌健康影响、非致癌健康总风险。As、Ni、Cr、Cd重金属的致癌风险值与4种元素总致癌风险值均未超出10-6~10-4的范围,尚不具备致癌风险。  相似文献   

7.
铅锌尾矿库周边土壤重金属污染特征及环境风险   总被引:4,自引:0,他引:4  
以尾矿库周边土壤为研究对象,用改进BCR法探讨Zn、Pb、Ni、Cu、Cr形态特征,用污染因子Cf和风险评价代码RAC评估环境风险。结果表明:Pb污染最重,总量是区域背景值的2倍多,污染剖面各重金属总量垂向分布均匀,污染已扩散至1 m深;5种金属均主要以残渣态存在,有效态、可交换态Pb质量占比均高于其他4种金属,与表层土壤相比,中、下层污染剖面各金属以更稳定的形态存在;Zn、Ni、Cu、Cr在表层或污染剖面土壤均存在低风险,部分点位Pb存在中度风险。  相似文献   

8.
The purpose of this study was to investigate the impact of overland traffic on the spatial distribution of heavy metals in urban soils (Istanbul, Turkey). Road dust, surface, and subsurface soil samples were collected from a total of 41 locations along highways with dense traffic and secondary roads with lower traffic and analyzed for lead (Pb), zinc (Zn), and copper (Cu) concentrations. Statistical evaluation of the heavy metal concentrations observed along highways and along the secondary roads showed that the data were bimodally distributed. The maximum observed Pb, Zn, and Cu concentrations were 1,573, 522 and 136 mg/kg, respectively, in surface soils along highways and 99.3, 156, and 38.1 mg/kg along secondary roads. Correlation analysis of the metal concentrations in road dust, surface and 20-cm depth soils suggests the presence of a common pollution source. However, metal concentrations in the deeper soils were substantially lower than those observed at the surface, indicating low mobility of heavy metals, especially for Pb and Zn. A modified kriging approach that honors the bimodality of the data was used to estimate the spatial distribution of the surface concentrations of metals, and to identify hotspots. Results indicate that despite the presence of some industrial zones within the study area, traffic is the main heavy metal pollution source.  相似文献   

9.
湖南省某冶炼厂周边农田土壤重金属污染及生态风险评价   总被引:6,自引:3,他引:3  
利用野外采样与实验室分析相结合的方法,以湖南省某冶炼厂周边农田土壤(0~20 cm)为研究对象,监测了Cd、As、Pb、Cr、Cu、Zn、Hg等7种重金属的含量,并对重金属污染程度与潜在生态风险进行了评价。结果表明,7种重金属都存在不同程度的超标或污染,其中Cd、As、Pb等的污染较为严重。统计学分析结果表明,Pb、As、Hg、Zn、Cd等来源相同,可能主要都来自于人为污染,即冶炼作业造成的污染。7种重金属化学形态不尽相同:在重金属有效态中,Cd的水溶态和可提取态较高;Pb、Cu、Zn可还原态、可氧化态这两部分含量较高。而Hg、As、Cr的残渣态含量较高。风险评价代码评价结果表明,Cd的生态风险较高,4.5%的样点Cd为极高生态风险,52.8%的样点Cd为高生态风险,42.7%的样点Cd为中度生态风险;100%的样点Zn为中度生态风险;Cu有60.1%的样点属于低生态风险,39.9%的样点属于中度生态风险;As、Pb主要以低生态风险为主(所占比例分别为77.2%、80%);Hg主要以无生态风险为主(所占94.3%)。Hakanson潜在生态风险指数法计算的综合潜在生态风险指数(RI)的范围为46.4~1 627.5,表明研究区域农田土壤存在很高的生态风险。上述各项结果综合表明,研究区农田土壤受到了严重的重金属污染,由此引起的重金属生态风险应引起高度关注。  相似文献   

10.
大宝山采矿活动对环境的重金属污染调查   总被引:2,自引:0,他引:2  
调查了大宝山铁铜多金属矿床固体废弃物-水相互作用对环境的重金属污染,结果表明,矿床固体废弃物导致了水、土壤的重金属污染,污染元素主要有Cd、Cu、Pb、Zn等;重金属元素的水迁移强度由大至小顺序为Cr、Cu、Zn、Ni、Cd、As、Pb、Hg;元素的生物吸收系数由大至小顺序为Cd、Zn、Hg、Ni、Cu、Cr、As、Pb,虽然水稻糙米中的重金属含量未超过国家标准,但Cd、Cr两种元素含量已远远超出了植物中毒量的下限值.  相似文献   

11.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

12.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

13.
The concentrations of toxic heavy metals—Cd and Pb and micronutrients—Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I—the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II—the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III—the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p?<?0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd?>?Mn?>?Zn?>?Cu?>?Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II?>?stage III?>?stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.  相似文献   

14.
Understanding regional variations of soil heavy metals and their anthropogenic influence are very important for environmental planning. In this study, 286 surface soil samples were collected in Fuyang county, and the 'total' metals for copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were measured in 2005. Statistic analysis showed that Cu, Zn, Pb and Cd had been added by exterior factors, and Ni was mainly controlled by natural factors. The combination of multivariate statistical and geostatistical analysis successfully grouped three groups (Cu, Zn and Pb; Cd; and Ni) of heavy metals from different sources. Through pollution evaluation, it was found that 15.76% of the study area for Cu, Zn and Pb, and 46.14% for Cd suffered from moderate or severe pollution. Further spatial analysis identified the limestone mining activities, paper mills, cement factory and metallurgic activities were the main sources for the concentration of Cu, Zn, Pb and Cd in soils, and soil Ni was mainly determined by the parent materials.  相似文献   

15.
In Chile, the increasing number of plants for the treatment of wastewater has brought about an increase in the generation of sludge. One way of sludge disposal is its application on land; this, however involves some problems, some of them being heavy metal accumulation and the increase in organic matter and other components from sewage sludge which may change the distribution and mobility of heavy metals. The purpose of the present study was to determine the effect of sewage sludge application on the distribution of Cr, Ni, Cu, Zn and Pb in agricultural soils in Chile. Three different soils, two Mollisols and one Alfisol, were sampled from an agricultural area in Central Chile. The soils were treated with sewage sludge at the rates of 0 and 30 ton ha(-1), and were incubated at 25 degrees C for 45 days. Before and after incubation, the soils were sequentially extracted to obtain labile (exchangeable and sodium acetate-soluble), potentially labile (soluble in moderately reducing conditions, K4P2O7-soluble and soluble in reducing conditions) and inert (soluble in strong acid oxidizing conditions) fractions. A two-level factored design was used to assess the effect of sludge application rate, incubation time and their interaction on the mobility of the elements under study. Among the metals determined in the sludge, zinc has the highest concentration. However, with the exception of Ni, the total content of metals was lower than the recommended limit values in sewage sludge as stated by Chilean regulations. Although 23% of zinc in sludge was in more mobile forms, the residual fraction of all metals was the predominant form in soils and sludge. The content of zinc only was significantly increased in two of the soils by sewage sludge application. On the other hand, with the exception of copper, the metals were redistributed in the first four fractions of amended soils. The effect of sludge application rate, incubation time and their interaction depended on the metal or soil type. In most cases an increase in more mobile forms of metals in soils was observed as the final effect.  相似文献   

16.
This study was conducted to determine status of heavy metals in agricultural soils under different patterns of land use. A total of 38, 40 and 45 soil samples for bare vegetable field, greenhouse vegetable field, and grain crop field were respectively taken from surface layer (0–20 cm) from selected experimental areas away from suburbs of ten counties (or districts or cities) in four provinces or municipalities of Huabei plain in north China. Information of crop production history, including varieties, rotation systems and fertilizer use, at the corresponding sampling sites was surveyed. Soil total Cu, Zn, Cd, Pb, Cr, As and Hg were measured. The results showed that the contents of total Cu, Zn, Cd, Pb, Cr, As, and Hg in the soil samples, especially soil total Cu and Zn contents, were higher in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. Long-term use of excessive chemical fertilizers and organic manures in the bare vegetable field and the greenhouse vegetable field contributed to the accumulation of Cu, Zn, and other heavy metals in the soils. The contents of total Cu, Zn, and other heavy metals in soils increased with increasing vegetable production history of the research areas. In comparison with the grain crop field, the comprehensive pollution indices of the seven soil heavy metals and the single-factor pollution indices of soil Zn, Cu, Cd, Cr, and Hg based on the second criterion of Environmental Quality Standard for Soils were significantly higher in the bare vegetable field and the greenhouse vegetable field. Soils from the greenhouse vegetable field were slightly contaminated according to the comprehensive pollution index, and soils from the bare vegetable field and the grain crop field were at the warning heavy metal pollution level. The soils were contaminated with Cd according to the single-factor pollution index. The Cd pollution was relatively more serious in the bare vegetable field and the greenhouse vegetable field than that in the grain crop field. The soils selected with different land use patterns were not contaminated with Zn, Cu, Pb, Cr, As and Hg.  相似文献   

17.
Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd?>?Cu?>?Ni?>?Zn?>?As?>?Cr?>?Hg?>?Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP)?>?urban land (UL)?>?manufacturing industries (MI)?>?agricultural land (AL)?>?woodland (WL)?>?water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL?>?MI?>?AL?>?WP?>?WL?>?WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.  相似文献   

18.
Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb?>?Cd?>?As?>?Zn?>?Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg?1 day?1 for Cu and 94.52 mg kg?1 day?1 for Zn, but that for adult oyster is 10.79 mg kg?1 day?1 for Cu and 137.24 mg kg?1 day?1 for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.  相似文献   

19.
Today there is consensus concerning the road traffic's role as a metal source. However, there are so far only a few studies which focus on the road side immission patterns regarding distance from roads, and especially in combination with the leachability of heavy metals down the soil profile. In this study, the aim was to analyse concentrations of traffic related metals in road side soils, at different depths and distances from roads, both to analyse the immission patterns as well as to explain the importance of the road construction design of the road side terrain. The BCR sequential extraction procedure was performed to be able to address the environmental risk in terms of metal mobility. Approximately 80 soil samples were analysed for seven metals; antimony (Sb), cadmium (Cd), copper (Cu), chromium (Cr), lead (Pb), nickel (Ni) and zinc (Zn). The results showed that, depending on metal, the total metal concentrations in road side soils have increased 3-16 times compared to regional background during the last decades. Each metal had a limited dispersal distance from the roads as well as down in the soil profile and the road construction significantly affected the metal immission distance. Elevated metal concentrations were mostly found for top soils and down to 10 cm in the soil profiles. The labile fractions counted for more than 40% of the total concentrations for Cd, Cu, Ni, Pb and Zn, indicating a potential mobilization of the metals if the road side soils become disturbed. The present soil metal concentration levels are not alarming, but metals with a high accumulation rate might gradually be an upcoming problem if nothing is done to their emission sources.  相似文献   

20.
Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be related to their solubility and chemical forms, and that they decrease with each successive extraction step, then the apparent mobility and bioavailability of these five heavy metals in ASM increase in the order of Cu < As < Ni < Fe < Zn. The SEM/AVS ratio was less than one in eight replicate ASM samples, indicating that the ASM was non-toxic with regards to having a low probability of bioavailable metals in the pore water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号