首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 718 毫秒
1.
采用FLEXPART大气扩散模式结合清单的模拟方法,通过与2010年上甸子大气本底站和城区海淀宝联站的CO观测浓度的比较,研究了北京地区CO浓度变化特征,并统计分析了各类排放源的贡献差异.研究结果表明:上甸子站和宝联站CO模拟浓度与观测浓度的变化趋势基本一致,相关系数分别优于0.74和0.45;与观测值相比,两站模拟浓度值偏低,模式对观测浓度峰值模拟能力有限.利用不同源清单模拟获得的同一站点CO浓度值相近,但交通、工业、民用等分类排放源对CO模拟浓度的贡献差异明显.与INTEX-B2006清单相比,利用MEIC2010排放清单模拟的宝联站交通与工业排放贡献的占比小、民用排放占比大;而上甸子站交通排放贡献的占比小,民用与工业排放的贡献占比大.因此,利用FLEXPART模式结合清单的模拟方法对CO浓度具有较好的模拟能力,可以较为准确地反映区域大气本底站和城区站CO浓度的变化特征;各类排放源对模拟浓度的贡献不仅受到测站所在地的局地排放源影响,更与影响测站的印痕区域的排放源密切相关.  相似文献   

2.
为研究单个站点观测浓度的源汇区域代表性及所在区域的CO2通量特征,利用大气反转模式FLEXPART模拟确定影响上甸子站观测浓度的气团主要来源,利用Carbon Tracker模式反演CO2浓度和通量的时空分布,并通过数值迭代方法和相关性分析方法获取最优印痕函数阈值,得到影响测站CO2浓度的源汇区域范围.其次,将在线观测CO2浓度筛分为本底和非本底浓度,利用FLEXPART模式追踪测站本底和非本底源区,研究发现,本底和非本底源汇区域明显不同并随季节变化.在印痕函数大于一定阈值的潜在源区内,本底和非本底区域净通量变化趋势差异明显,而且在各通量分支中本底区域化石燃料通量较小、生物圈通量较大,非本底区域化石燃料通量较大、生物圈通量较小.通过反演模式能够定量得到影响测站观测浓度的源汇区域及区域通量特征.  相似文献   

3.
上甸子本底站湿沉降化学成分变化与来源解析   总被引:9,自引:1,他引:8  
利用上甸子本底站自1999~2004年的降水资料,对8种离子(K 、Na 、Ca2 、Mg2 、NH4 、SO42-、NO3-、Cl-)浓度做了统计分析.并通过PMF(positive matrix factorization)方法对该地区的湿沉降来源做了解析.结果表明,①pH 分布在4.41~6.55之间,电导率分布在 40.97~69.64μS·cm-1之间.②上甸子本底站的电导率结果明显高于清洁地区降水背景点(瓦里关全球大气本底监测站)、低于北京城区的观测结果,表明降水化学成分受大气污染显著.但污染水平要低于人类活动集中的地区.③SO2-4、NO3-、NH4 、Ca2 是上甸子站降水样品中最主要的水溶性离子;从季节变化来看,SO2-4离子春季最高、夏季最低,NO3-离子冬春两季浓度水平相当,夏季略偏低,H 离子浓度春季最低,夏秋两季相当,冬季最高.④源解析结果表明.土壤尘是上甸子本底站降水化学成分最主要的来源;与施肥有关的农田排放是本底站降水成分的另一个重要的源;此外,来自污染地区的交通运输排放和燃煤排放的输送作用同样影响着该地区降水化学成分.  相似文献   

4.
利用逆向轨迹反演模式估算北京地区甲烷源强   总被引:3,自引:0,他引:3       下载免费PDF全文
利用连续监测的大气甲烷浓度数据和拉格朗日逆向轨迹反演模式估算出北京甲烷源排放强度,并与根据最新调查数据建立的北京地区甲烷源排放清单进行了比较。排放清单结果表明,北京地区甲烷排放总量为296.4Gg/a,其中,最主要的甲烷排放源为城市垃圾和化石燃料,反映了北京作为一特大城市甲烷排放以人为源为主的特点。利用2000年6月至12月连续观测的有湿合层代表性的北京大气甲烷浓度,通过奇异值分解法(Singular Value Decomposition,SVD)反演出模拟区域的甲烷排放源强度和分布。模式计算与排放清单在甲烷源定性分布上对应较好,定量结果也是合理的。但由于可输入的气象数据有限,轨迹在整个模拟区域内覆盖不均匀,反演出的源块位置有偏差,其中偏差最大的为煤矿的甲烷排放。  相似文献   

5.
一种快速定量估计大气污染物来源的方法   总被引:3,自引:0,他引:3  
定量估计目标区域大气污染物源区的时空分布对有效应对空气污染具有重要的支撑作用.本文利用FLEXPART拉格朗日粒子扩散模式、WRF模式和清华大学MEIC人为排放源清单,建立了一种基于气象条件和人为源排放清单的快速定量估计大气污染物源区时空分布的方法,并以上海地区2015年12月22—23日一次污染过程为例,确定了目标区域和目标时段的污染物来源分布.与WRF-Chem模式人为排放源"清零试验"结果的对比分析结果表明,本定量估计的结果尽管在数值存在一定偏差,但在时间和空间分布上具有良好的一致性.研究表明,本文提供了一种快速并较为准确的定量估计目标区域大气污染物源区时空分布的方法.  相似文献   

6.
北京上甸子区域大气本底站HCFC-22在线观测研究   总被引:1,自引:1,他引:0  
2007年4月~2008年3月,利用GC-ECD在线观测系统,在北京上甸子区域大气本底站开展了HCFC-22在线观测,讨论了北京上甸子站HCFC-22浓度水平并初步分析其影响因素.该站大气HCFC-22浓度(摩尔分数,下同)为(278.1±113.6)×10-12.利用逐步逼近回归法进行本底值筛分,本底浓度为(199.5±5.1)×10-12,与北半球同纬度带Mace Head和TrinidadHead本底站观测结果基本一致;非本底浓度为(312.1±121.0)×10-12,出现频率69.8%,表明该站受到较强HCFC-22排放源及输送的影响.上甸子站HCFC-22本底浓度季节变化不明显,但非本底浓度呈现夏高冬低的特点,平均非本底浓度最高月(7月)比最低月(1月)高100.9×10-12,与HCFC-22排放的季节性有关.结合风向分析,该站西南扇区平均浓度(327.3×10-12)比东北扇区(236.2×10-12)高91.1×10-12.HCFC-22高浓度水平主要由W-WSW-SW方向贡献引起,NNE-N-NE方向则使得全年HCFC-22浓度水平明显降低.  相似文献   

7.
采用人工智能算法XGBoost结合大气化学模式WRF-Chem,利用北京地区大气污染物的模拟结果及站点监测数据,构建XGBoost统计预报算法模型,并对两种大气污染物(PM2.5和O3)进行优化模拟,同时分析其特征贡献要素.结果表明,该统计预报模型能够很好地优化大气化学模式模拟的大气污染物浓度,降低模拟误差,对于北京地区站点模拟浓度优化呈现出城区>近郊>远郊的优化特点,且算法模型对O3浓度优化程度更高,优化后相关系数提高达128%.此外,通过特征要素的贡献量分析表明,CO是影响O3优化的重要特征变量,城郊区特征贡献得分均高达1000以上,Q2(近地面2m比湿)是影响PM2.5优化的重要气象特征变量,城郊区特征贡献得分分别为950和824.  相似文献   

8.
临安区域大气本底站CO_2浓度特征及其碳源汇变化研究   总被引:1,自引:1,他引:0  
通过分析2006年8月~2009年7月临安区域大气本底站Flask瓶采样获得的CO2浓度特征,结合碳追踪模式的模拟结果,研究了长三角地区碳源汇变化对CO2浓度的影响.结果表明,临安区域大气本底站的CO2浓度分布在368.3×10-6~414.8×10-6之间,具有较明显的季节波动变化特征,冬季高、夏季低,浓度年较差接近...  相似文献   

9.
颗粒物浓度的数值模拟能够反映颗粒物的空间分布特征,对于防治大气颗粒物污染具有一定意义.利用MEIC清单和第二次全国污染源普查(简称“二污普”)数据统计的甘肃省工业源、电力源、农业源、民用源和交通源五类源的主要污染物排放量,分析了污染源排放的空间分布特征,利用WRF-Chem模式模拟了甘肃省2019年1月PM10和PM2.5浓度,将模拟结果与甘肃省33个环境空气质量国控监测点颗粒物日均监测数据进行对比,检验WRF-Chem模式模拟的性能,进一步分析了甘肃省颗粒物浓度的空间分布特征.结果表明:①甘肃省SO2、NOx、PM10、PM2.5、VOCs、NH3和CO在1月的排放量分别为2.12×104、2.96×104、2.97×104、2.43×104、3.18×104、1.27×104和3.04×105 t,除NH3外,其他污染物排放高值主要分布在兰州市、嘉峪关市等工业发达地区.②33个环境空气质量国控监测点模拟与监测的PM10和PM2.5浓度的相关系数分别为0.544和0.597,颗粒物的模拟值与监测值有较好的相关性;WRF-Chem模式模拟结果显示,PM10和PM2.5浓度高值分布在兰州市,次高值分布在天水市和庆阳市,甘南藏族自治州以及河西地区颗粒物浓度较低,这是甘肃省工业布局、扩散条件和地形条件综合作用的结果.研究显示,WRF-Chem模式可以较好地模拟甘肃省区域颗粒物浓度时空分布特征.   相似文献   

10.
基于气团72h后向轨迹输送特征,结合数值统计方法,对北京上甸子站2010~2014年瓶采样样品大气CH_4进行污染/非污染数据筛分.结果表明约42%的数据筛分为污染数据,剩余数据则被认为是未受局地源汇污染、混合较为均匀的本底数据.基于这些本底数据对上甸子站大气CH_4本底浓度变化特征进行研究,结果表明:观测期间上甸子站大气CH_4本底浓度从1884.0×10~(-9)(2010年)增长到1916.4×10~(-9)(2014年),年均增长率为8.5×10~(-9)/a.其季节变化特征与北半球平均状况类似,冬春季高、夏秋季低,高值出现在1~2月,低值出现在6~7月,季节振幅达32.8×10~(-9),主要与·OH自由基浓度季节变化有关.此外,CH_4本底浓度年均值及平均季节变化月均值均高于同纬度带海洋边界层水平及全球大气本底站瓦里关站.  相似文献   

11.
利用拉格朗日粒子扩散模式FLEXPART结合上甸子区域本底站在线观测HCFC-142b数据,采取自上而下的反演方法,估算了2009和2010年中国HCFC-142b的排放量分别为10.82kt/a和15.42kt/a,分别占全球HCFC-142b排放量的29.7%和45.8%.反演HCFC-142b排放量的空间分布结果显示其排放源主要集中在京津冀、四川、山东西部以及长江中下游地区,与相关研究中自下而上方法获得的排放量分布一致.模式反演源较先验源更接近观测数据,2009年相关系数从0.38提高到0.47,2010年相关系数则从0.60提高到0.65.  相似文献   

12.
Any accurate simulation of regional air quality by numerical models entails accurate and up-to-date emissions data for that region.The INTEX-B2006 (I06),one of the newest emission inventories recently popularly used in China and East Asia,has been assessed using the Community Multiscale Air Quality model and observations from regional atmospheric background stations of China.Comparisons of the model results with the observations for the species SO2,NO 2,O 3 and CO from the three regional atmospheric background stations of Shangdianzi,Longfengshan and Linan show that the model can basically capture the temporal characteristics of observations such as the monthly,seasonal and diurnal variance trends.Compared to the other three species,the simulated CO values were grossly underestimated by about two-third or one-half of the observed values,related to the uncertainty in CO emissions.Compared to the other two stations,Shangdianzi had poorer simulations,especially for SO2 and CO,which partly resulted from the site location close to local emission sources from the Beijing area;and the regional inventory used was not capable of capturing the influencing factors of strong regional sources on stations.Generally,the fact that summer gave poor simulation,especially for SO2 and O 3,might partly relate to poor simulations of meteorological fields such as temperature and wind.  相似文献   

13.
北京及周边地区典型站点近地面O3的变化特征   总被引:5,自引:0,他引:5       下载免费PDF全文
利用2008年6月1日~2009年5月31日在北京城区中国气象局(CMA),及其西南方向固城站(GCH)和东北方向上甸子本底站(SDZ)的近地面O3等观测数据,分析了O3的变化特征及其与其他污染物和气象要素的关系.结果表明,上甸子本底站近地面O3的季节变化和日变化规律与固城和北京城区站存在一定的差异,而固城站和北京城区站的O3变化特征差异较小.相关性分析显示,O3与NO、NO2、NOx、RH多呈负相关,且相关性冬季好于夏季,此外,O3与气温和风速呈正相关,其中北京城区站冬季和夏季O3与风速的相关性差异最明显.O3浓度与地面风向有一定关系,当风向为偏南时,O3浓度较高,当风向为东北时,O3浓度偏低.  相似文献   

14.
长江三角洲背景地区CO2浓度变化特征研究   总被引:4,自引:0,他引:4       下载免费PDF全文
通过分析2009年1月~2010年12月临安区域大气本底站在线观测获得的CO2浓度,研究地面风向、地面风速、气团输送等因素对长江三角洲背景地区CO2浓度的影响.结果表明,临安站CO2浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在9.5′10-6~44.3′10-6 (V/V)之间;季节变化特征表现为冬春季高,夏季低,浓度年较差为10.1′10-6 (V/V).通过分析地面风向、地面风速和气团输送等因素对临安站CO2浓度的影响表明,引起CO2浓度升高的地面风向夏季主要为NW~NNE,冬季主要为NNE~ESE;地面风速越大,CO2浓度越小;气团远距离输送的影响主要取决于气团途径区域的CO2排放情况.  相似文献   

15.
利用自组装GC-ECD系统在北京上甸子区域大气本底站开展大气四氯化碳(CCl4)摩尔分数在线观测.2007年4月~2008年3月期间,该站CCl4本底摩尔分数(89.4±0.7)×10-12,与北半球同纬度带Mace Head和Trinidad Head本底站观测结果基本一致;非本底摩尔分数(94.7±5.1)×10-12,出现频率63.6%,表明该站也能捕捉到高摩尔分数CCl4空气团输送信息;CCl4本底摩尔分数变化较小,且没有明显的季节变化;非本底摩尔分数呈现夏高冬低的特点,平均非本底摩尔分数最高月份(6月)比最低月份(1月)高7.6×10-12.应用CO比值相关法初步估算2007年4月~2008年3月我国CCl4排放量约4.7kt·a-1,与文献报道Bottom-up方法估算我国同期CCl4排放量接近;CO比值相关法估算CCl4排放量的不确定性主要来自同源假设及观测站代表性.  相似文献   

16.
区域大气污染数值模拟方法研究   总被引:3,自引:1,他引:2       下载免费PDF全文
大气污染是一个区域性的环境污染问题,北京大气环境的质量与周边地区污染源的排放有密切关系.将气象模型高级区域预报系统(ARPS)与空气污染模型Models-3耦合进行模拟计算,从检验结果可以看出,模拟值与实测值有较好的一致性,表明该模式系统可以用来研究区域大气污染物传输及相互影响.模拟计算了2002年北京地区各季ρ(PM10)以及山西污染源对北京的贡献,结果表明,在特殊的天气条件下的典型时段,尤其是在西南风气流场控制下,山西污染源对北京空气质量有较大的影响.比较而言,夏季(8月)山西污染源的平均贡献率最大,约为15.44%;冬季(1月)最小,约为2.25%.表明控制北京大气污染不容忽视周边污染源的影响.   相似文献   

17.
在北京城区和上甸子本底地区分别开展了为期3a和1a的NH3在线观测,并结合风向、风速、温度、相对湿度等气象因素的变化特征,分析了北京地区NH3浓度水平、年季特征及影响因素.结果发现,北京城区和本底地区的NH3年均浓度分别为(32.5±20.8)×10-9V/V和(11.6±10.3)×10-9V/V,北京城区的NH3浓度高于大多数国内外主要城市和地区的NH3浓度水平.城区和本底地区NH3浓度年变化特征为夏季高,分别为(34.1±6.8)×10-9V/V和(11.1±2.2)×10-9V/V,冬季低,分别为(19.7±9.3)×10-9V/V和(2.4±0.6)×10-9V/V.NH3的日变化特征受气象因素影响明显,其结果表明,春季城区NH3浓度峰值出现在15:00,而本底地区受西南风影响在20:00达到峰值;夏季城区NH3浓度最高值在7:00出现,本底地区则呈现双峰值(分别在09:00和22:00);秋季城区和本底地区的日变化规律一致,均在22:00出现峰值;冬季城区的峰值出现时间晚于本底地区,峰值分别出现在23:00和20:00.西南风是造成本底地区NH3浓度升高的主要原因,春季和夏季,随着西南向风速的增大,NH3浓度显著升高.城区的NH3浓度则主要受到局地排放的影响.浓度权重轨迹法的研究结果发现,北京、天津、河北及河南北部地区是影响北京地区大气NH3的主要源区.  相似文献   

18.
我国4个WMO/GAW本底站大气CH4浓度及变化特征   总被引:6,自引:4,他引:2  
利用基于光腔衰荡光谱(CRDS)技术自组装的大气CH4在线观测系统,于2009~2010年在青海瓦里关、浙江临安、北京上甸子和黑龙江龙凤山这4个世界气象组织全球大气观测网(WMO/GAW)大气本底站对大气CH4进行了在线观测.临安站在所有季节中CH4浓度都表现出类似的日变化趋势,即浓度在每日~05:00(北京时间)达到最高值,在~14:00为最低.夏季龙凤山站CH4浓度表现出类似的规律,但其日变化振幅较大,达到216.8×10-9(摩尔分数,下同).上甸子站春、秋、冬季CH4浓度呈现类似变化趋势,但夏季日平均值较高,在晚间~20:00达到最高值,瓦里关站四季CH4浓度日变化均不明显.3个区域本底站(临安、上甸子和龙凤山)全年CH4本底浓度存在明显的变化,临安站CH4本底浓度在7月达到全年最低水平.龙凤山站则表现出相反的趋势,在8月达到全年最高值,其全年浓度表现出"W"型变化.冬季龙凤山和上甸子站CH4浓度高于春季和秋季.瓦里关站全年浓度变化较小,月平均浓度振幅仅为11.5×10-9.临安、上甸子和龙凤山3个区域本底站夏季CH4非本底数据占总数据的比例>70%.为分析气团传输的影响,对4站夏季高浓度时刻(瓦里关:CH4>1 870×10-9,龙凤山CH4>2 100×10-9,临安CH4>2 150×10-9,上甸子CH4>2 050×10-9)对应的气团轨迹进行聚类分析表明,夏季出现的高浓度CH4观测数据可能主要由气团传输所引起.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号