首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
北京市废弃物处理温室气体排放特征   总被引:1,自引:0,他引:1  
基于《2006年IPCC国家温室气体清单指南》推荐的方法,结合《省级温室气体清单编制指南(试行)》和《城市温室气体核算工具指南》的部分数据与核算范围,针对固体废弃物填埋、焚烧和废水处理等过程,核算了北京市2005-2014年废弃物处理过程中温室气体总排放量。结果表明:2005-2014年北京市废弃物处理过程温室气体总排放量呈逐渐上升趋势,2014年温室气体总排放量比2005年增长98%。10年间,固体废弃物填埋过程一直是最主要的温室气体排放源,到2014年排放量达到最大,为416.3×104t二氧化碳当量(CO2e)。废弃物填埋、废水处理和废弃物焚烧过程占总排放量的比例分别为78.5%(CO2e质量分数,下同)、13.5%和8%。结合已有研究,系统优化国内7个典型城市废弃物处理温室气体排放因子,核算7个城市排放情况,并对比分析了北京市排放情况。  相似文献   

2.
This paper provides an overview of the trend of generation, composition, and management of municipal solid waste, and estimates the carbon emissions arising from municipal solid waste management in Beijing. The correlation analysis conducted shows that the generation of municipal solid waste in Beijing has been growing steadily, showing high correlations (r > 0.9) to the total GDP, per capita income, and the population. Food waste showed an increasing trend since 1990. Compared with the results of an investigation in 1990, ash and woodchips content in 2003 declined from 56% to 17%, while the percentage of paper and plastic increased from 10% to 29% over the same period. The calorific value of the municipal waste also increased, from 2,686 kJ/kg in 1990 to 4,667 kJ/kg in 2003, indicating that the waste is suitable for incineration. Currently, the source separation ratio of municipal waste is approximately 15%. About 94% of all the collected solid waste goes to the landfill while 4% is composted and 2% is incinerated. A moderate garbage collection fee is applied to both permanent and temporary residents in Beijing, but the willingness to pay for solid waste collection and treatment is still low. Under current treatment mode, the total amounts of carbon emission from waste disposal sites and incineration increased with the increase of municipal solid waste, from 29.8 Gg in 1990 to 84.5 Gg in 2003, including 83.3 Gg of CH4 and 22.0 Gg of CO2. The data availability and methodological challenges in monitoring the quantity and characteristics of municipal solid waste are discussed.  相似文献   

3.
以广东某铅锌冶炼厂的废旧除尘布袋及其布袋上的飞灰为实验材料,以HNO3-H2O2-HF对布袋及飞灰进行微波全量消解,采用BCR三步浸提法提取飞灰中Cu、Zn、Pb、Cr、Ni、Cd 6种重金属,并利用火焰原子吸收仪器检测布袋及飞灰中6种重金属的含量及飞灰中各形态含量。结果表明,铅锌冶炼厂废旧布袋和飞灰中重金属含量较高,远大于《国家土壤环境质量标准》(GB 15168—1995)三级标准值。不同重金属在飞灰中的形态分布差异较大,Ni主要以残渣态和酸可交换态为主,Cu和Pb以残渣态为主,Zn的4种形态分布都较均匀,Cd、Zn潜在的迁移性最强。  相似文献   

4.
Fly ash samples were taken from solid waste incinerators with different feeding waste, furnace type, and air pollution control device in six cities of Zhejiang province. The solid waste incinerators there constitute one fifth of incinerators in China. Heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in the fly ash. Moreover, the fly ash samples were extracted by toxicity characteristic leaching procedure (TCLP). The biotoxicity of the leachate was evaluated by Chlorella pyrenoidosa. High variation and contents were found for both the heavy metals and PCDD/Fs. The contents of Zn, Cu, As, Pb, Cd, Cr, Ni, and Hg in the fly ash samples varied from 300 to 32,100, 62.1–1175, 1.1–57, 61.6–620, 0.4–223, 16.6–4380, 1.2–94.7, and 0.03–1.4 μg g−1 dw, respectively. The total contents of 17 PCDD/Fs varied from 0.1128 to 127.7939 μg g−1 dw, and the 2,3,7,8-TeCDD toxic equivalents (TEQ) of PCDD/Fs ranged from 0.009 to 6.177 μg g−1 dw. PCDF congeners were the main contributor to the TEQ. The leachate of the fly ash showed biotoxicity to C. pyrenoidosa. A significant correlation was found between the Cd and EC50 values. Further research is required to investigate the environmental impact of the various pollutants in the fly ash.  相似文献   

5.
利用加速器质谱技术测定大气14CO2以示踪大气化石源CO2成为当前减污降碳工作的热点。该文从加速器质谱14C分析基础出发,系统介绍了加速器质谱的工作原理、大气样品的采集及纯化、石墨化样品的制备和测定,阐述了大气碳监测领域14 CO2测试的研究进展。随着加速器质谱技术的不断发展,大气14CO2的研究将会更加广泛和深入,有助于进一步认识大气化石源CO2的来源,更有针对性地开展减污降碳工作。未来应统一制定14CO2监测方法标准,规范操作流程和质控手段,完善实验仪器配套设施,加快提升监测能力和水平。  相似文献   

6.
This paper provides a comprehensive characterization of mineral waste such as fly ash, bottom ash, slag and construction demolition (C&D) collected from four different thermal power plants, three steel plants and three C&D waste generation sites in India. To determine utilisation potential and environmental concerns, as received fly ash, bottom ash, slag and C&D waste were analysed for physico-chemical, mineralogical and morphological properties. The physico-chemical properties analysed include pH, moisture content, acid insoluble residue, loss on ignition(LOI), carbon content, fineness, chloride content, sulphate content, reactive silica content, XRF and heavy metal analysis. Morphological and mineralogical characteristics were investigated using scanning electron microscopy–energy dispersive X-ray. Particle size distribution was obtained using particle size analyser. The material analysed has different compositions and were selected with a view to determine their suitability for different applications in cement and concrete industry and for further research studies.  相似文献   

7.
The first greenhouse gas (GHG) emission estimates for Senegal, for the year 1991, were produced according to the draft IPCC/OECD guidelines for national inventories of GHGs. Despite certain discrepancies, nonavailability of data, the quality of some of the data collected, and the methodology, the estimates provide a provisional basis for Senegal to fulfill its obligations under the UN Framework Convention on Climate Change. This inventory reveals that GHG emissions in Senegal, like those in many developing countries, can mainly be attributed to the use of biomass for energy, land-use change and forestry, and savanna burning. Taking into account the direct global warming potential of the main GHGs (CO2, CH4, and N2O), Senegal's emissions are estimated at 17.6 Tg ECO2. The major gases emitted are CO2 (61% of GHG emissions), followed by CH4 (35%) and N2O (4%). Energy accounts for 45% of total emissions (12% from fossil energy and 33% from traditional biomass energy); land-use change and forests, 18%; agriculture, 24%; waste, 12%; and industry, 1%.  相似文献   

8.
This paper discusses the REAP1 model and its application for the analysis of CO2 reduction and waste management policies for Japanese petrochemicals. The pros and cons of this modelling approach in comparison to other tools is elaborated. This is followed by a discussion of the model code and the modelling results. The results show that CO2 policies can have significant impacts on waste flows and waste policies can have significant CO2 benefits. As a consequence both effects must be considered in policy assessment. Pricing instruments are recommended instead of regulations because of the complex physical relations in the materials life cycle that extend beyond sector boundaries. A taxation approach is superior to a subsidy approach because rebound effects can be avoided.  相似文献   

9.
As part of the Danish NEAREX project the origin and variability of anthropogenic atmospheric CO2 over the Northeast Atlantic Region (NEAR) has been studied. The project consisted of a combination of experimental and modelling activities. Local volunteers operated CO2 sampling stations, built at University of Copenhagen, for 14C analysis at four locations (East Denmark, Shetland Isles, Faroe Isles and Iceland). The samples were only collected during winter periods of south-easterly winds in an attempt to trace air enriched in fossil-fuel derived CO2 due to combustion of fossil fuels within European countries. In order to study the transport and concentration fields over the region in detail, a three-dimensional Eulerian hemispheric air pollution model has been extended to include the main anthropogenic sources for atmospheric CO2. During the project period (1998–2001) only a few episodes of transport from Central Europe towards NEAR arose, which makes the data set for the evaluation of the method sparse. The analysed samples indicate that the signal for fossil CO2, as expected, is largest (up to 3.7±0.4% fossil CO2) at the Danish location closest to the European emissions areas and much weaker (up to ∼1.5±0.6% fossil CO2) at the most remote location. As the anthropogenic signal is weak in the clean atmosphere over NEAR these numbers will, however, be very sensitive to the assumed background 14CO2 activity and the precision of the measurements. The model simulations include the interplay between the driving processes from the emission into the boundary layer and the following horizontal/vertical mixing and atmospheric transport and are used to analyse the meteorological conditions leading to the observed events of high fossil CO2 over NEAR. This information about the history of the air masses is essential if an observed signal is to be utilised for identifying and quantifying sources for fossil CO2.  相似文献   

10.
Macroeconomic models predict that the global primary energy demand will increase by a factor of 2–4 by the year 2050. In contrast, climate analyses made by the IPCC claim that CO2 emissions in 2050 should not exceed the values of 1990 or even be 20% lower. By 2100 emissions should be reduced to one third of the present value. The common wisdom to deal with these opposing trends is the concept of de-carbonization, i.e., the continuous decrease of the carbon emission per unit energy utilization. De-carbonization rates needed to compensate for the growing demand while keeping the CO2-emissions constant should at least be 2% per year compared to actual values of 0.3%. The potential of different de-carbonization rate measures is analyzed. It is argued that the goal can only be met if per capita energy utilization in the industrialized countries is significantly reduced from their typical level of 5000–10 000 W. As a realistic target we suggest 2000 Watt per capita, the present global average. This would leave expansion capacity for the developing countries which presently have per capita demand between 300 and 1000 W. Based on the example of Switzerland it is shown that the two key issues to attain this goal are the quality of buildings and the demand for mobility. It is concluded that the conversion of the present energy system into a 2000 W system is neither limited by technology nor by finances but by the acceptance of a new life style in which energy is used more efficiently and more intelligently than today. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
A cost-efficient way to allocate carbon dioxide (CO2) emission reductions among countries or regions is to harmonise their marginal reduction costs. This could be achieved by a market of emission reduction units (ERUs). To model such a market, we use a multi-regional MARKAL-MACRO model. It gives insights into the consequences of co-ordinating CO2 abatement on regional energy systems and economies. As a numerical application, we assess the establishment of a market of ERUs among three European countries for curbing their CO2 emissions.  相似文献   

12.
This study developed a reliable procedure to assess the carbon dioxide (CO2) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO2 diffusion coefficient and increased CO2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO2 emissions from the production of ordinary Portland cement.  相似文献   

13.
Ground level volume mixing ratio of methane in a tropical coastal city   总被引:1,自引:0,他引:1  
Urban regions are hotspots of greenhouse gas emissions which include CO2, CH4, N2O, etc. Methane is a strong greenhouse gas which is produced from a number of sources including fossil fuel combustion, municipal waste, and sewage processing, etc. Ground level mixing ratio of methane in the tropical coastal city of Thiruvananthapuram in South India, during calm early morning period was measured. Measurements were done during both winter and summer seasons. Concentrations were significantly higher than global average value. Intra-city variation in ground level mixing ratio was also significant. Ground level methane concentration at Thiruvananthapuram urban area showed maximum value of 3.16 ppmV. Under stable atmospheric conditions in early morning, ground level mixing ratio of methane was 2.79 ppmV in winter and 2.54 ppmV during summer. The spatial distribution of methane concentration shows correlation with urban heat island.  相似文献   

14.
为研究中国30个省/自治区/直辖市之间电力区域调配的污染物转移效应,构建了电力传输的污染转移模型,并以SO_2和NO_x为例对2006、2015年数据进行测算。结果表明,2015年电力行业SO_2、NO_x排放强度分别由2006年的4.03、2.18 g/(kW·h)下降到0.69、0.77 g/(kW·h)。2015年,16个电力净输入区通过电力跨区域传输的SO_2、NO_x转移量分别为47.8×10~4、53.0×10~4t,占这些地区电力行业SO_2、NO_x排放量的24.1%、24.2%;14个电力净输出区通过电力跨区域传输的SO_2、NO_x转移量分别为-54.6×10~4、-52.1×10~4t,占这些地区电力行业SO_2、NO_x排放量的26.5%、22.8%。研究结果对于分析区域物质流动所隐含的污染流动,全面认识区域污染物排放格局,制定合理的区域污染减排目标具有一定借鉴意义。  相似文献   

15.
Methane (CH4) is one of the most relevant greenhouse gases and it has a global warming potential 25 times greater than that of carbon dioxide (CO2), risking human health and the environment. Microbial CH4 oxidation in landfill cover soils may constitute a means of controlling CH4 emissions. The study was intended to quantify CH4 and CO2 emissions rates at the Sungai Sedu open dumping landfill during the dry season, characterize their spatial and temporal variations, and measure the CH4 oxidation associated with the landfill cover soil using a homemade static flux chamber. Concentrations of the gases were analyzed by a Micro-GC CP-4900. Two methods, kriging values and inverse distance weighting (IDW), were found almost identical. The findings of the proposed method show that the ratio of CH4 to CO2 emissions was 25.4 %, indicating higher CO2 emissions than CH4 emissions. Also, the average CH4 oxidation in the landfill cover soil was 52.5 %. The CH4 and CO2 emissions did not show fixed-pattern temporal variation based on daytime measurements. Statistically, a negative relationship was found between CH4 emissions and oxidation (R 2?=?0.46). It can be concluded that the variation in the CH4 oxidation was mainly attributed to the properties of the landfill cover soil.  相似文献   

16.
Lignite powered electric generation plants result in increasing environmental problems associated with gaseous emissions and the disposal of ash residues. Especially, low quality coals with high ash content cause enormous quantities of both gaseous and solid fly ash emissions. The main problem is related to the disposal of fly ash, which, in many cases, contains heavy metals. It is known that toxic trace metals may leach when fly ash is in contact with water. In this study, fly ash samples obtained from the thermal power plant in the town of Can in Turkey were investigated for leachability of metals under different acidic and temperature conditions. The experimental results show that a decrease in pH of the leachant favors the extraction of metal ions from fly ash. A significant increase in the extraction of arsenic, cadmium, chromium, zinc, lead, mercury, and selenium ions from the ash is attributed to the instability of the mineral phases. These heavy metals concentrations increase with respect to increasing acidic conditions and temperature. Peak concentrations, in general, were found at around 30°C.  相似文献   

17.
Fly ash (FA) from coal-burning industries may be a potential inorganic soil amendment; the insight of its nutrient release and supply to soil may enhance their agricultural use. The study was conducted to assess the ability of fly ash (a coal fired thermal plant waste) to reduce soil fertility depletion and to study bioaccumulation of mineral nutrients in Jatropha curcas grown on soils amended with fly ash. Fly ash was amended to field soil at six rates (0, 5, 10, 20, 40, and 70 % w/w) on which J. curcas was grown. After 8 months of growth, the height of jatropha plants was significantly increased at 5 and 10 % FA-amended soil, whereas, biomass significantly increased at 5, 10, and 20 % FA-amended soil compared to control soil (0 % FA). Leaf nutrients uptake, followed by stems and roots uptake were highly affected by fly ash amendment to soil. Most of nutrients accumulation were increased up to 20 % fly ash and decreased thereafter. The results of available nutrient analysis of soil revealed that availability of nitrogen, potassium, sulfur, copper, iron, mangnese, and zinc declined significantly at higher levels of fly ash amendments, whereas, availability of phosphorus increased at these levels. However, pH, organic carbon, and available boron were not influenced significantly by fly ash amendment to soil. Microbial biomass C, N, and ratio of microbial-C to organic C were significantly reduced at 20 % fly ash and higher amounts. This study revealed that J. curcas plants could gainfully utilize the nutrients available in fly ash by subsequently amending soil.  相似文献   

18.
Agriculture is a significant source of anthropogenic greenhouse gas (GHG) emissions, and beef cattle are particularly emissions intensive. GHG emissions are typically expressed as a carbon dioxide equivalent (CO2e) ‘carbon footprint’ per unit output. The 100-year Global Warming Potential (GWP100) is the most commonly used CO2e metric, but others have also been proposed, and there is no universal reason to prefer GWP100 over alternative metrics. The weightings assigned to non-CO2 GHGs can differ significantly depending on the metric used, and relying upon a single metric can obscure important differences in the climate impacts of different GHGs. This loss of detail is especially relevant to beef production systems, as the majority of GHG emissions (as conventionally reported) are in the form of methane (CH4) and nitrous oxide (N2O), rather than CO2. This paper presents a systematic literature review of harmonised cradle to farm-gate beef carbon footprints from bottom-up studies on individual or representative systems, collecting the emissions data for each separate GHG, rather than a single CO2e value. Disaggregated GHG emissions could not be obtained for the majority of studies, highlighting the loss of information resulting from the standard reporting of total GWP100 CO2e alone. Where individual GHG compositions were available, significant variation was found for all gases. A comparison of grass fed and non-grass fed beef production systems was used to illustrate dynamics that are not sufficiently captured through a single CO2e footprint. Few clear trends emerged between the two dietary groups, but there was a non-significant indication that under GWP100 non-grass fed systems generally appear more emissions efficient, but under an alternative metric, the 100-year global temperature potential (GTP100), grass-fed beef had lower footprints. Despite recent focus on agricultural emissions, this review concludes there are insufficient data available to fully address important questions regarding the climate impacts of agricultural production, and calls for researchers to include separate GHG emissions in addition to aggregated CO2e footprints.  相似文献   

19.
The effect of two fly ashes as soil amendment on the adsorption–desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K f) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils?+?fly ash mixtures than the metolachlor. The K f values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R?>?0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific.  相似文献   

20.
On a global scale, the Gulf Corporation Council Countries (GCCC), including Bahrain, are amongst the top countries in terms of carbon dioxide emissions per capita. Building authority in Bahrain has set a target of 40% reduction of electricity consumption and associated CO2 emissions to be achieved by using facade parameters. This work evaluates how the life cycle CO2 emissions of buildings are affected by facade parameters. The main focus is placed on direct and indirect CO2 emissions from three contributors, namely, chemical reactions during production processes (Pco2), embodied energy (Eco2) and operational energy (OPco2). By means of the life cycle assessment (LCA) methodology, it has been possible to show that the greatest environmental impact occurs during the operational phase (80–90%). However, embodied CO2 emissions are an important factor that needs to be brought into the systems used for appraisal of projects, and hence into the design decisions made in developing projects. The assessment shows that masonry blocks are responsible for 70–90% of the total CO2 emissions of facade construction, mainly due to their physical characteristics. The highest Pco2 emissions factors are those of window elements, particularly aluminium frames. However, their contribution of CO2 emissions depends largely on the number and size of windows. Each square metre of glazing is able to increase the total CO2 emissions by almost 30% when compared with the same areas of opaque walls. The use of autoclaved aerated concrete (AAC) walls reduces the total life cycle CO2 emissions by almost 5.2% when compared with ordinary walls, while the use of thermal insulation with concrete wall reduces CO2 emissions by 1.2%. The outcome of this work offers to the building industry a reliable indicator of the environmental impact of residential facade parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号