首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Non-point-source (NPS) pollution remains the primary source of stream impairment in the United States. Many problems such as eutrophication, sedimentation, and hypoxia are linked with NPS pollution which reduces the water quality for aquatic and terrestrial organisms. Increasingly, NPS pollution models have been used for landscape-scale pollution assessment and conservation strategy development. Our modeling approach functions at a scale between simple landscape-level assessments and complex, data-intensive modeling by providing a rapid, landscape-scale geographic information system (GIS) model with minimal data requirements and widespread applicability. Our model relies on curve numbers, literature-derived pollution concentrations, and land status to evaluate total phosphorus (TP), total nitrogen (TN), and suspended solids (SS) at the reach scale. Model testing in the Chesapeake Bay watershed indicated that predicted distributions of water quality classes were realistic at the reach scale, but precise estimates of pollution concentrations at the local scale can have errors. Application of our model in the tributary watersheds along Lake Ontario suggested that it is useful to managers in watershed planning by rapidly providing important information about NPS pollution conditions in areas where large data gaps exist, comparisons among stream reaches across numerous watersheds are required, or regional assessments are sought.  相似文献   

2.
ABSTRACT: Sediments from the Pompton and Passaic Rivers at Two Bridges were analyzed for potentially available phosphorus fractions and total phosphorus (TP). Water samples from the same sites were analyzed for dissolved phosphorus, TP, suspended solids (SS), and volatile SS. Significant negative correlations between river TP concentrations and flow were observed. However, storm flows resulted in increases in TP and SS concentrations and flux (loadings). Most of the increase in river P loading at high flow was in the dissolved fraction, suggesting that the sediments may be a large source of dissolved P. Concentrations of potentially available P in the sediments ranged from 140 to 1310 times the TP concentration in the overlying water. According to a modified Vollenweider model, current P concentrations in the Pompton and Passaic Rivers will result in excessive P loading in the Wanaque Reservoir if even small volumes of river water are pumped to the reservoir through the recently completed Wanaque South pipeline. Reductions in sewage treatment plant effluent P concentrations alone will not produce sufficient decreases in river phosphorus concentrations to avoid this predicted overloading and eutrophication.  相似文献   

3.
Seasonal and spatial variations in major ion chemistry and isotope composition in the rural-urban catchment of the Shigenobu River were monitored to determine the influences of agricultural and urban sewage systems on water quality. Temporal patterns of biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), and suspended sediment (SS) were examined at four sites in the rural-urban catchment. Urban land cover, incorporating the effects of increased population, domestic water use, and industrial wastewater, was positively associated with increases in water pollution and was included as an important explanatory variable for the variations in all water quality parameters. Significant trends were found in each parameter. BOD concentrations ranged widely, and were high in urban regions, due to the presence of a waste water treatment plant. TN and SS showed various trends, but did not vary widely, unlike TP. TP concentrations varied greatly, with high concentrations in cultivated areas, due to fertilizer use. Local water quality management or geology could further explain some of the variations in water quality. Non-point-source pollution exhibited strong positive spatial autocorrelation, indicating that incorporating spatial dimensions into water quality assessment enhances our understanding of spatial patterns of water quality. Data from the Ministry of Land Infrastructure and Transport (MLIT) and Environment Ministry (EM) were used to investigate trends in land management. Stepwise regression analysis was used to test the correlation between specific management practises and substance concentrations in surface water and sediment. MLIT and EM data for 1981-2003 showed an increase in TN, TP, and SS concentrations in surface water. High levels of fertilizer in dormant sprays and domestic water use were associated with high pesticide concentrations in water and sediment. This paper presents a novel method of studying the environmental impact of various agricultural management practises and recommends a management strategy that combines the use of reduced-risk pesticides with irrigation and non-irrigation periods in paddy fields.  相似文献   

4.
Many lakes have experienced a transition from a clear into a turbid state without macrophyte growth due to eutrophication. There are several measures by which nitrogen (N) and phosphorus (P) concentrations in the surface water can be reduced. We used the shallow lake model PCLake to evaluate the effects of three measures (reducing external nutrient loading, increasing relative marsh area, and increasing exchange rate between open water and marsh) on water quality improvement. Furthermore, the contribution of different retention processes was calculated. Settling and burial contributed more to nutrient retention than denitrification. The model runs for a typical shallow lake in The Netherlands showed that after increasing relative marsh area to 50%, total phosphorous (TP) concentration in the surface water was lower than the Maximum Admissible Risk (MAR, a Dutch government water quality standard) level, in contrast to total nitrogen (TN) concentration. The MAR levels could also be achieved by reducing N and P load. However, reduction of nutrient concentrations to MAR levels did not result in a clear lake state with submerged vegetation. Only a combination of a more drastic reduction of the present nutrient loading, in combination with a relatively large marsh cover (approximately 50%) would lead to such a clear state. We therefore concluded that littoral marsh areas can make a small but significant contribution to lake recovery.  相似文献   

5.
In order to study system responses of Falls of the Neuse Reservoir (Falls Lake) to varied nutrient loadings, a coupled three-dimensional hydrodynamic and eutrophication model was applied. The model was calibrated using 2005 and 2006 intensive survey data, and validated using 2007 survey data. Compared with historical hydrological records, 2005 and 2007 were considered as dry years and 2006 was recognized as a normal year. Relatively higher nutrient fluxes from the sediment were specified for dry year model simulations. The differences were probably due to longer residence time and hence higher nutrient retention rate during dry years in Falls Lake. During the normal year of 2006, approximately 70% of total nitrogen (TN) and 80% of total phosphorus (TP) were delivered from the tributaries; about 20% (TN and TP) were from the sediment bottom. During the dry years of 2005 and 2007, the amount of TN released from sediment was equivalent to that introduced from the tributaries, indicating the critical role of nutrient recycling within the system in dry years. The model results also suggest that both nitrogen and phosphorus are limiting phytoplankton growth in Falls Lake. In the upper part of the lake where high turbidity was observed, nitrogen limitation appeared to dominate. Scenario model runs also suggest that great nutrient loading reductions are needed for Falls Lake to meet the water quality standard.  相似文献   

6.
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   

7.
四川升钟水库水质评价及污染负荷分析   总被引:2,自引:0,他引:2  
选取高锰酸盐指数(CODMn)、五日生化需氧量(BOD5)、总氮(TN)、总磷(TP)4项监测指标,采用单因干评价法、综合污染指数法、内梅罗污染指数法、模糊综合评价法及水质标识指数法对升钟水库2004~2010年水污染特征进行分析与评价,结果表明:水质标识指数法比较适合升钟水库水体富营养化评价;单因子水质标识指数显示,水库主要污染物为总氮(TN)、总磷(TP),基本呈现富营养状态;2008年水质最差,2010年水质达到Ⅱ类标准;7年Iwq的平均值Ave(Iwq)=3.393,Ave(Iwq)未达到国家Ⅱ类水质标准。近7年综合水质标识指数(Iwq)在不同时点上具有高-低演化规律,总体趋向好转。通过计算2006年N、P污染负荷,TN、TP入库主要源于水产养殖,其贡献率分别为:55%、82%,升钟水库TN、TP是合理容量的1.97~2.32倍。应严格控制水库网箱肥水养殖。研究结果对指导升钟水库水污染防治与水资源管理具有重要的意义。  相似文献   

8.
邛海水质变化趋势及保护对策研究   总被引:1,自引:0,他引:1  
本文通过对邛海流域现状污染源进行调查,邛海流域COD、氨氮、总氮和总磷产生量分别为5892.1t/a、995.6t/a、2888.2t/a和1105.1t/a,污染负荷主要来自面源污染.通过2002 ~ 2011年邛海水质监测数据分析,邛海水质近10年总体保持Ⅱ~Ⅲ类,处于中营养状态,2004~ 2006年水质相对较差,2006年以后水质逐渐好转.总磷、总氮是邛海主要污染因子,海河口是邛海污染最严重的区域.为实现邛海水质和流域生态环境持续改善,从产业结构优化、流域污染源治理、生态保育和流域生态环境综合监管等方面提出对策建议.  相似文献   

9.
This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.  相似文献   

10.
This study examined the spatial-temporal variations and factors influencing the management of groundwater along a section of the Bagmati river corridor in the Kathmandu valley (Nepal). The results showed that rural areas were less polluted than urban areas. In urban areas, the biochemical oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 8.41 to 29.74 mg/L, 6.7 to 128.96 mg/L and 0.06 to 1.5 mg/L, respectively. In rural areas, the BOD, TN and TP concentrations ranged from 0.78 to 18.25 mg/L, 4.8 to 11.56 mg/L and 0.07 to 0.65 mg/L, respectively. The level of organics was higher in the pre-monsoon season, while the level of nutrients was higher in post-monsoon season. A comparison of the groundwater and surface water in the upstream rural areas revealed that the TP concentration was higher in the groundwater than in the surface water, which was attributed to the sorption of phosphorus on iron, aluminum or calcium compounds contained in the surface water, which depends upon the temperature, pH and dissolved oxygen. In urban areas, a few wells were found at groundwater levels lower than the corresponding surface water levels and were subjected to a high risk of pollution. Overall, these findings reinforce the notion that the management of surface and ground waters in an integrated approach is essential for attaining sustainable development of groundwater systems.  相似文献   

11.
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters.  相似文献   

12.
为了揭示悬浮泥沙(SSC)对水库水质的影响规律,对汾河水库进行样品收集和长期水质监测,采用水动力模型与泥沙转移和富营养化模型相结合的方法,将这三者关联耦合,并通过实测数据对模型进行参数率定和验证,分析含沙水和不含沙水中总氮(TN)、总磷(TP)、叶绿素a(Chla)、溶解氧(DO)四项指标,得出两者对水质造成的影响。结果表明:SSC对TN、TP的去除作用明显,对Chla、DO浓度分布影响较小,并计算了污染物的释放量以及贡献率,得出TP的负荷仅为16.47t,而贡献率高达25.25%。因此在汾河的污染控制方面应侧重削减磷,进而改善汾河地区的污染现状。  相似文献   

13.
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both.  相似文献   

14.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

15.
Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km−2 a−1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002–2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a−1 in 2007 including 4,642 t a−1 of wet deposition, lower than the values obtained in 2002–2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period of favorable algal growth.  相似文献   

16.
ABSTRACT: Because the Truckee River connects two lakes along the Eastern Sierra Nevada Mountains with different limiting nutrients, this research addresses whether the nitrogen:phosphorus (N:P) balance of the river ecosystem changes longitudinally. Historical (1990 to 2000) total nitro‐gen:total phosphorus (TN:TP) ratios in river water exhibited the expected gradient from high N:P ratios upstream to low N:P ratios downstream, with the major gradient of the N:P balance occurring within the transition between montane and high desert terrain. During 2001, the river contained anomalously low total nitrogen concentrations in the far upper reaches and dissolved inorganic nitrogen concentrations in the lower reaches, resulting in a less apparent longitudinal gradient of N:P ratios. Measurements of periphyton growth and physiology (nutrient bioassays and ectoenzyme activities) and stoichiometry during the summer of 2001 also exhibited a complex picture of the spatial variation of N:P balance that was not entirely consistent with a strong N:P gradient. However, the compendium of the indicators did support the overall picture of an overarching longitudinal gradient from high to low N:P ratios. The results suggest that periphyton management efforts in the Truckee River should consider the overall spatial gradient as well as the small‐scale dynamics of the stream ecosystem structure.  相似文献   

17.
Like many coastal zones and estuaries, the Chesapeake Bay has been severely degraded by cultural eutrophication. Rising implementation costs and difficulty achieving nutrient reduction goals associated with point and nonpoint sources suggests that approaches supplemental to source reductions may prove useful in the future. Enhanced oyster aquaculture has been suggested as one potential policy initiative to help rid the Bay waters of excess nutrients via harvest of bioassimilated nutrients. To assess this potential, total nitrogen (TN), total phosphorous (TP), and total carbon (TC) content were measured in oyster tissue and shell at two floating-raft cultivation sites in the Chesapeake Bay. Models were developed based on the common market measurement of total length (TL) for aquacultured oysters, which was strongly correlated to the TN (R2 = 0.76), TP (R2 = 0.78), and TC (R2 = 0.76) content per oyster tissue and shell. These models provide resource managers with a tool to quantify net nutrient removal. Based on model estimates, 10(6) harvest-sized oysters (76 mm TL) remove 132 kg TN, 19 kg TP, and 3823 kg TC. In terms of nutrients removed per unit area, oyster harvest is an effective means of nutrient removal compared with other nonpoint source reduction strategies. At a density of 286 oysters m(-2), assuming no mortality, harvest size nutrient removal rates can be as high as 378 kg TN ha(-1), 54 kg TP ha(-1), and 10,934 kg TC ha(-1) for 76-mm oysters. Removing 1 t N from the Bay would require harvesting 7.7 million 76-mm TL cultivated oysters.  相似文献   

18.
Restoration of the Florida Everglades is important for the health of the natural system, including both the "River of Grass" and its downstream estuaries. Water quality improvement is one indicator of successful restoration in this complex ecosystem. Using the period of record of 1977 through 2005, we evaluated data from seven inflow sites to the Everglades National Park (ENP) for temporal trends of various forms of phosphorus (P) and nitrogen (N) and analyzed them using principal component analysis and factor analysis without flow adjustments. Locally estimated scatter plot smoothing (LOESS) trend lines identified two inflection points (three time periods) of changing trend in total P (TP) concentration at the seven sites. Results indicated that overall water quality in ENP inflow improved from 1977 to 2005, with significant downward trends in TP concentration. The overall trend ofTP is probably mediated by hydrology, which is evident by a negative relationship between flow and annual average TP concentration at the majority of stations within the available data, although additional changes in vegetation due to hydroperiod may have some effects. Total N (TN), total Kjeldahl N, and total organic N concentrations also generally decreased at inflow sites. Water quality standards for TP, TN, and NH4+ -N were exceeded at selected sites during the study period. Principle component analysis and factor analysis detected a grouping of sampling sites related to the water delivery system that could be used as indicators to better manage monitoring resources. Study results suggest that water quality data analyses could provide additional insight into the success of a restoration management plan and on how monitoring may be modified for more efficient use ofresources.  相似文献   

19.
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production.  相似文献   

20.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号