首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rubber leaf powder (an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(II) ions from aqueous solution was evaluated. The interactions between Pb(II) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDX). The effects of several important parameters which can affect adsorption capacity such as pH, adsorbent dosage, initial lead concentration and contact time were studied. The optimum pH range for lead adsorption was 4–5. Even at very low adsorbent dosage of 0.02 g, almost 100% of Pb(II) ions (23 mg/L) could be removed. The adsorption capacity was also dependent on lead concentration and contact time, and relatively a short period of time (60–90 min) was required to reach equilibrium. The equilibrium data were analyzed with Langmuir, Freundlich and Dubinin-Radushkevich isotherms. Based on Langmuir model, the maximum adsorption capacity of lead was 95.3 mg/g. Three kinetic models including pseudo first-order, pseudo second-order and Boyd were used to analyze the lead adsorption process, and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

2.
Rubber leaf powder(an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(Ⅱ) ions from aqueous solution was evaluated.The interactions between Pb(Ⅱ) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared(FT-IR) spectroscopy,scanning electron microscopy(SEM) coupled with X-ray energy dispersive spectroscopy(EDX).The effects of several important parameters which can affect adsorption capacity such as pH,adsorbent dosage,initial lead concentration and contact time were studied.The optimum pH range for lead adsorption was 4-5.Even at very low adsorbent dosage of 0.02 g,almost 100% of Pb(Ⅱ) ions(23 mg/L) could be removed.The adsorption capacity was also dependent on lead concentration and contact time,and relatively a short period of time(60-90 min) was required to reach equilibrium.The equilibrium data were analyzed with Langmuir,Freundlich and Dubinin-Radushkevich isotherms.Based on Langmuir model,the maximum adsorption capacity of lead was 95.3 mg/g.Three kinetic models including pseudo first-order,pseudo second-order and Boyd were used to analyze the lead adsorption process,and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

3.
Waste textiles(WTs) are the inevitable outcome of human activity and should be separated and recycled in view of sustainable development. In this work, WT was modified through grafting with acrylic acid(AA) via radical polymerization process using ceric ammonium nitrate(CAN) as an initiator and microwave and/or UV irradiation as energy supply. The acrylic acid-grafted waste textiles(WT-g-AA) thus obtained was then used as an adsorbent to remove Pb(Ⅱ) from Pb(Ⅱ)-containing wastewater. The effects of p H, initial concentrations of Pb(Ⅱ) and adsorbent dose were investigated, and around 95% Pb(Ⅱ) can be removed from the aqueous solution containing 10 mg/L at p H 6.0–8.0. The experimental adsorption isotherm data was fitted to the Langmuir model with maximum adsorption capacity of35.7 mg Pb/g WT-g-AA. The Pb-absorbed WT-g-AA was stripped using dilute nitric acid solution and the adsorption capacity of Pb-free material decreased from 95.4%(cycle 1) to91.1%(cycle 3). It was considered that the WT-g-AA adsorption for Pb(Ⅱ) may be realized through the ion-exchange mechanism between \COOH and Pb(Ⅱ). The promising results manifested that WT-g-AA powder was an efficient, eco-friendly and reusable adsorbent for the removal of Pb(Ⅱ) from wastewater.  相似文献   

4.
Trimercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and the Brunauer-Emmet-Teller method. The effects of initial Ag(I) concentration, contact time, solution pH and coexisting ions on the adsorption capacity of Ag(I) were systematically investigated. The maximum adsorption capacity of Ag(I) was up to 187.1 mg/g resin at pH 0.0 and room temperature. The kinetic experiments indicated that the adsorption rate of Ag(I) onto the chelating resin was quite fast in the first 60 min and reached adsorption equilibrium after 360 min. The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model. Moreover, the chelating resin could selectively adsorb more Ag(I) ions than other heavy metal ions including: Cu(II), Zn(II), Ni(II), Pb(II) and Cr(III) during competitive adsorption in the binary metal species systems, which indicated that it was a highly selective adsorbent of Ag(I) from aqueous solution.  相似文献   

5.
The adsorption of Methyl Violet (MV) cationic dye from aqueous solution was carried out by using crosslinked poly (acrylic acid-co-acrylamide)/attapulgite (Poly(AA-co-AM)/ATP) composite as adsorbent. The factors influencing adsorption capacity of the composite such as pH, concentration of the dye, temperature, contact time, adsorbent dosage, ionic strength and surfactant were systematically investigated. The equilibrium data fitted very well to the Langmuir isotherm and the maximum adsorption capacity reached 1194 mg/g at 30°C. The thermodynamic parameters including G0, △H0 and △S 0 for the adsorption processes of MV on the composite were also calculated, and the negative △H0 and △G0 confirmed that the adsorption process was exothermic and spontaneous. The kinetic studies showed that the adsorption process was consistent with the pseudo second-order kinetic model and the desorption studies revealed that the regeneration of the composite adsorbent can be easily achieved.  相似文献   

6.
Phosphate removal from aqueous waste streams is an important approach to control the eutrophication downstream bodies of water. A Fe(III) coordinated amino-functionalized silicate adsorbent for phosphate adsorption was synthesized by a post-grafting and metal cation incorporation process. The surface structure of the adsorbent was characterized by X-ray di raction, N2 adsoropion/desoprotion technique, and Fourier transform infrared spectroscopy. The experimental results showed that the adsorption equilibrium data were well fitted to the Langmuir equation. The maximum adsorption capacity of the modified silicate material was 51.8 mg/g. The kinetic data from the adsorption of phosphate were fitted to pseudo second-order model. The phosphate adsorption was highly pH dependent and the relatively high removal of phosphate fell within the pH range 3.0–6.0. The coexistence of other anions in solutions has an adverse e ect on phosphate adsorption; a decrease in adsorption capacity followed the order of exogenous anions: F?? > SO2?? 4 > NO??3 > Cl??. In addition, the adsorbed phosphate could be desorbed by NaOH solutions. This silicate adsorbent with a large adsorption capacity and relatively high selectivity could be utilized for the removal of phosphate from aqueous waste streams or in aquatic environment.  相似文献   

7.
8.
Removal of noxious dyes is gaining public and technological attention. Herein grafting polymerization was employed to produce a novel adsorbent using acrylic acid and carboxymethyl cellulose for dye removal. Scanning electron microscopy and Fourier-transform infrared spectroscopy verified the adsorbent formed under optimized reaction conditions. The removal ratio of adsorbent to Methyl Orange, Disperse Blue 2BLN and malachite green chloride reached to 84.2%, 79.6% and 99.9%, respectively. The greater agreement between the calculated and experimental results suggested that pseudo second-order kinetic model better represents the kinetic adsorption data. Equilibrium adsorptions of dyes were better explained by the Temkin isotherm. The results implied that this new cellulose-based absorbent had the universaiity for removal of dyes through the chemical adsorption mechanism.  相似文献   

9.
The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for ch...  相似文献   

10.
The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and di erent initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non–linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an e cient adsorbent for the removal of Pb(II) ions from aqueous solutions.  相似文献   

11.
Bamboo charcoal(BC) was used as starting material to prepare iron-modified bamboo charcoal(Fe-MBC) by its impregnation in FeCl 3 and HNO 3 solutions simultaneously,followed by microwave heating.The material can be used as an adsorbent for Pb(Ⅱ) contaminants removal in water.The composites were prepared with Fe molar concentration of 0.5,1.0 and 2.0 mol/L and characterized by means of N 2 adsorption-desorption isotherms,X-ray diffraction spectroscopy(XRD),scanning electron microscopy coupled with energy dispersive X-ray spectrometry(SEM-EDS),Fourier transform infrared(FT-IR) and point of zero charge(pH pzc) measurements.Nitrogen adsorption analyses showed that the BET specific surface area and total pore volume increased with iron impregnation.The adsorbent with Fe molar concentration of 2 mol/L(2Fe-MBC) exhibited the highest surface area and produced the best pore structure.The Pb(Ⅱ) adsorption process of 2Fe-MBC and BC were evaluated in batch experiments and 2Fe-MBC showed an excellent adsorption capability for removal Pb(Ⅱ).The adsorption of Pb(Ⅱ) strongly depended on solution pH,with maximum values at pH 5.0.The ionic strength had a significant effect on the adsorption at pH < 6.0.The adsorption isotherms followed the Langmuir isotherm model well,and the maximum adsorption capacity for Pb(Ⅱ) was 200.38 mg/g for 2Fe-MBC.The adsorption processes were well fitted by a pseudo second-order kinetic model.Thermodynamic parameters showed that the adsorption of Pb(Ⅱ) onto Fe-MBC was feasible,spontaneous,and exothermic under the studied conditions,and the ion exchange mechanism played an significant role.These results have important implications for the design of low-cost and effective adsorbents in the removal of Pb(Ⅱ) from wastewater.  相似文献   

12.
A novel illite@carbon(I@C) nanocomposite adsorbent has been synthesized via a facile hydrothermal carbonization process(HTC) using glucose as carbonaceous source and illite as the carrier.The morphology,microstructure and surface properties of the prepared nanocomposite adsorbent were analyzed by FESEM,TGA,XRD,FT-IR and Zeta potential measurements.Batch experiments were carried out on the adsorption of Cr(Ⅵ) to determine the adsorption properties of the composite.The adsorption of Cr(Ⅵ) onto the I@C nanocomposite was well described by the pseudo-second-order kinetic model and Langmuir isotherm.Compared with the illite and carbon material(SC) separately,the prepared I@C nanocomposite adsorbent exhibited enhanced adsorption performance for Cr(Ⅵ) with a maximum adsorption capacity of 149.25 mg/g,which was higher than that of most reported adsorbents.In addition,the adsorption process was spontaneous and endothermic based on the adsorption thermodynamics study.The adsorption of Cr(Ⅵ) by I@C was highly p H-dependent and the optimum adsorption occurred at p H 2.0.The Zeta potential analysis results indicated that the electrostatic interactions between anionic Cr(Ⅵ) and the positively charged surface of the adsorbent might be critical to the adsorption mechanism.This study demonstrated that the I@C nanocomposite should be a promising candidate for a low-cost,environmental friendly and highly efficient adsorbent for the removal of toxic Cr(Ⅵ) from wastewater.  相似文献   

13.
La-EDTA-Fe3O4 was prepared by a chemical co-precipitation method. The magnetic composite was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Furthermore, the adsorption properties of La-EDTA-Fe3O4 toward phosphate in water were investigated. The uptake rate of phosphate in water by La-EDTA-Fe3O4 was 3-1000 times than that of EDTA-Fe3O4 , and reached 97.8% at 7 hr. The adsorption process agreed well with the Freundlich model and kinetics studies showed that the adsorption of phosphate proceeds according to pseudo second-order adsorption kinetics. The maximum removal rate was achieved at pH 6.0-7.0. The La-EDTA-Fe3O4 had good adsorption properties and could be separated well from aqueous solution by a permanent magnet. Therefore, this nanomaterial has potential application for the removal of phosphate from large water bodies.  相似文献   

14.
Graphene oxide is a very high capacity adsorbent due to its functional groups and π?π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.  相似文献   

15.
Cross-linked Fe(III)-chitosan composite (Fe-CB) was used as the adsorbent for removing perchlorate from the aqueous solution. The adsorption experiments were carried out by varying contact time, initial concentrations, temperatures, pH, and the presence of co-existing anions. The morphology of the adsorbent was discussed using FT-IR and SEM with X-EDS analysis. The pH ranging from 3.0-10.2 exhibited very little effect on the adsorption capability. The perchlorate uptake onto Fe-CB obeyed Langmuir isotherm model. The adsorption process was rapid and the kinetics data obeyed the pseudo second-order model well. The eluent of 2.5% (W/V) NaC1 could regenerate the exhausted adsorbent efficiently. The adsorption mechanism was also discussed.  相似文献   

16.
Cationic hydrogel with magnetic property was synthesized via radical polymerization and its removal capacity of chromate from contaminated water was found to be 200 mg/g. Using Fourier transform infrared spectroscopy (FT-IR) study, the mechanism of chromate removal by hydrogel was found to be non-specific adsorption, mainly due to ion exchange, as evidenced by the positively charged functional group, trimethyl ammonium –N+(CH3)3; in the monomer. Verifications were accordingly determined by testing different oxyanion adsorption onto the hydrogel. The results of the chromate adsorption experiments illustrated that the amount of chromate adsorbed was nearly equal to that of the chloride released from the hydrogel, which is part of the evidence for ion exchange. Single and multi-oxyanion adsorption experiments were also performed, and it was demonstrated that ion removal was species independent, but charge dependent, another characteristic of the ion exchange process. It was found that the same Langmuir model can be applied to best fit the findings of single and multi-oxyanion adsorption, which further indicates the mechanism of chromate removal is attributed to ion exchange. In view of the above, the background anions compete for adsorption sites with chromate, evidenced by inhibitive chromate removal in the presence of background electrolytes in the batch studies, further echoing the ion exchange mechanism.  相似文献   

17.
The mesoporous Cu/Mg/Fe layered double hydroxide(Cu/Mg/Fe-LDH) with carbonate intercalation was synthesized and used for the removal of arsenate from aqueous solutions.The Cu/Mg/Fe-LDH was characterized by Fourier transform infrared spectrometry,X-ray diffraction crystallography,scanning electron microscopy,X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller.Effects of various physico-chemical parameters such as pH,adsorbent dosage,contact time and initial arsenate concentration on the adsorption of arsenate onto Cu/Mg/Fe-LDH were investigated.Results showed that it was efficient for the removal of arsenate,and the removal efficiency of arsenate increased with the increment of the adsorbent dosage,while the arsenate adsorption capacity decreased with increase of initial pH from 3 to 11.The adsorption isotherms can be well described by the Langmuir model with R 2 > 0.99.Its adsorption kinetics followed the pseudo second-order kinetic model.Coexisting ions such as HPO42-,CO32-,SO42and NO3could compete with arsenate for adsorption sites on the Cu/Mg/Fe-LDH.The adsorption of arsenate on the adsorbent can be mainly attributed to the ion exchange process.It was found that the synthesized Cu/Mg/Fe-LDH can reduce the arsenate concentration down to a final level of < 10 μg/L under the experimental conditions,and makes it a potential material for the decontamination of arsenate polluted water.  相似文献   

18.
Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Crystal Violet (CV)) from aqueous solutions. The polyacrylamide/bentonite composite (PAA-B) was prepared by intercalative polymerization of acrylamide with Nabentonite in the presence of N,N0-methylenebisacrylamide as a crosslinking agent and hexamethylenediammine as propagater. PAA-B was subsequently treated with ethylenediammine to increase its loading capacity for HA. The surface characterizations of the adsorbent were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was detected at pH range 6.0–8.0. The capacity of HA-Am-PAA-B was found to decrease in the following order: MG > MB > CV. The kinetic and isotherm data were interpreted by pseudo-second order rate equation and Freundlich isotherm model, respectively. Experiments were carried out using binary solute systems to assess the competitive adsorption phenomenon. The experimental isotherm data for each binary solute combination of MG, MB and CV were analyzed using Sheindrof-Rebhun-Sheintuch (SRS) (multicomponent Freundlich type) equation.  相似文献   

19.
Hydrous manganese dioxide (HMO) synthesized by redox of potassium permanganate and hydrogen peroxide was used as an adsorbent for Pb(Ⅱ) removal.The specific surface area,pore volume and BJH pore diameter of the HMO were 79.31m2/g,0.07cm3/g and 3.38 nm,respectively.The adsorption equilibrium at 298K could be well described by the Langmuir isotherm equation with q max value of 352.55mg/g.The negative values of G and the positive values of H and S indicated the adsorption process was spontaneous and endothermic.The pseudo second-order equation could best fit the adsorption data.The value of the calculated activation energy for Pb(Ⅱ) adsorption onto the HMO was 38.23 kJ/mol.The uptake of Pb(Ⅱ) by HMO was correlated with increasing surface hydroxyl group content and the main adsorbed speciation was PbOH+.The final chemical state of Pb(Ⅱ) on the surface of HMO was similar to PbO.HMO was a promising candidate for Pb(Ⅱ) removal from aqueous solution.  相似文献   

20.
Removal of heavy metals from aqueous solution by sawdust adsorption   总被引:4,自引:1,他引:3  
The adsorption of lead, cadmium and nicel from aqueous solution by sawdust of walnut was investigated. The effect of contact time, initial metal ion concentration and temperature on metal ions removal has been studied. The equilibrium time was found to be of the order of 60 min. Kinetics fit pseudo first-order, second-order and intraparticle diffusion models, hence adsorption rate constants were calculated. The adsorption data of metal ions at temperatures of 25, 45 and 60~C have been described by the Freundlich and Langmuir isotherm models. The thermodynamic parameters such as energy, entropy and enthalpy changes for the adsorption of heavy metal ions have also been computed and discussed. Ion exchange is probably one of the major adsorption mechanisms for binding divalent metal ions to the walnut sawdust. The selectivity order of the adsorbent is Pb(I1)~Cd(II)〉Ni(I1). From these results, it can be concluded that the sawdust of walnut could be a good adsorbent for the metal ions from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号