首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
武婷  崔焕文  肖咸德  翟增秀  韩萌 《环境科学》2024,45(5):2613-2621
选取了我国5种典型化工行业VOCs排放源进行了源排放特征分析,通过对70个VOCs源样品的分析,结果表明,烷烃是合成材料制造业、石化行业和涂料产品制造业的主导VOCs种类(占比分别为43%、63%和68%),烯烃是日用化学产品制造业的VOCs主要种类(46%),卤代烃在专用化学品制造业排放中占主导(43%);利用机器学习方法分析了上述行业的标志组分,发现癸烷和四氢呋喃是合成材料制造业源的特征标志组分,正丁醇和甲苯是日用化学产品制造业源的特征标志组分,1,2,3-三甲苯和1,3,5-三甲苯是石化行业源的特征标志组分,丙烯和3-甲基戊烷是涂料产品制造业的标志组分,对二甲苯和异丙苯是专用化学品制造业源的特征标志组分;并采用最大增量反应活性法(MIR)估算了各VOCs排放源的臭氧生成潜势(OFP),结果表明,在单位浓度总VOCs排放条件下,对臭氧生成潜势的贡献大小依次为日用化学产品制造业、专用化学品制造业、石化行业、合成材料制造业和涂料产品制造业.建议在今后的臭氧防控中,更应关注各行业所排放的关键活性物种,而不仅仅注重VOCs排放总量.  相似文献   

2.
针对2017年8月4—7日在上海市及周边城市发生的臭氧污染过程,结合30个采样点连续4 d的大气挥发性有机物(VOCs)苏玛罐样品分析数据及O_3和NO_2在线监测数据,分析了此次污染过程的O_3和NO_2的时间变化特征、VOCs组分及臭氧生成潜势(OFP)的空间分布特征,并对VOCs来源进行了研究.结果表明,采样期间,上海市的O_3和NO_2平均浓度水平总体均高于周边的5个城市.VOCs均值浓度的空间分布总体为西北部高于东南部,上海市VOCs均值浓度为48×10~(-9),相较周边城市处于中间水平.上海市各类VOCs浓度为OVOCs烷烃卤代烃芳香烃烯炔烃,OFP贡献为芳香烃烯炔烃烷烃OVOCs和卤代烃.VOCs源解析结果显示机动车、溶剂使用、化工和石化工艺过程是上海市VOCs的3个主要来源.结合VOCs来源解析与OFP的贡献分析,控制上海市臭氧污染需重点削减溶剂使用和化工工艺过程中的甲苯、乙苯、间/对二甲苯、邻二甲苯和苯等芳香烃的排放,同时加强机动车和石化工艺过程中丙烯、乙烯和乙炔的排放控制.  相似文献   

3.
唐山夏季大气VOCs污染特征及臭氧生成潜势   总被引:3,自引:2,他引:1       下载免费PDF全文
丁洁然  景长勇 《环境工程》2016,34(6):130-135
在唐山市区对大气环境VOCs进行样品采集,对VOCs污染特征及臭氧生成潜势进行了分析。结果表明:唐山市区VOCs主要以烷烃和芳香烃为主,分别占VOCs总质量浓度的50.3%和30.4%。烷烃和烯烃以丁烷和丙烯等组分为主,芳香烃以苯、甲苯、乙苯和二甲苯为主。由于污染源排放强度、气象条件和光化学反应强弱的影响,VOCs浓度有明显的小时变化特征,8:00—10:00浓度最高,中午较低,且与早上相比,烯烃浓度降低比例中午最大。VOCs臭氧生成潜势敏感性组分以烯烃为主,占总VOCs臭氧生成潜势贡献的49.0%~66.8%,其主要敏感性种类为丙烯。  相似文献   

4.
为了深入了解深圳市主要工业行业挥发性有机物VOCs排放组分特征,该研究采用气袋采样-GC/MS分析系统,对6个典型行业企业的VOCs排放进行了测定。结果显示:家具、塑胶和自行车制造行业由于大量喷漆的使用而排放特征相似,芳香烃含量突出(70%);而制鞋行业排放的芳香烃和卤代烃含量均较高(分别占比为41%和55%),与制鞋工艺中所用的胶粘剂中富含苯系物和氯代烃相关;印刷行业排放中由油墨释放的烷烃和芳香烃含量均较高(分别占比为43%和40%);电子行业由于工艺复杂性,烷烃、芳香烃和卤代烃排放量则大致均等。该研究详细量化了家具制造、制鞋和自行车制造行业的VOCs排放源成分谱,共55种VOCs组分,其中包括9种烷烃、7种烯烃、9种芳香烃和30种卤代烃,为环境大气中VOCs来源识别提供了参比信息。进一步对不同行业进行了臭氧生成潜势(OFP)估算,结果表明家具制造业的OFP贡献最为显著(42%),应成为深圳市控制臭氧污染的优先控制行业。  相似文献   

5.
电子制造业塑料件生产过程的挥发性有机物排放特征分析   总被引:2,自引:0,他引:2  
选取珠三角地区典型电子制造企业,通过气袋采样及预浓缩-GC-MS/FID分析方法,获得塑料件生产过程的挥发性有机物(VOCs)浓度水平与组分特征.实验共检出包括烷烃、烯烃、芳香烃、醛类、卤代烃等在内的101种VOCs组分.其中,塑料件生产过程可分为注塑成型期和塑料件加工期,塑料件加工期包括喷涂工艺和非喷涂工艺.结果表明,注塑成型期总VOCs排放浓度较塑料件加工期低,含氧VOCs(OVOCs)、烷烃是最重要的组分;塑料件加工期的喷涂工艺VOCs排放浓度普遍高于非喷涂工艺,OVOCs、卤代烃是塑料件加工期主要的VOCs组分,其中,丙酮和三氯乙烯为主要成分.与其他研究相比,本研究中卤代烃排放比例明显提高,芳香烃排放比例下降.注塑成型期臭氧生成潜势标准化反应活性系数R值比塑料件加工期高24%,其中,丙烯醛是贡献最大的物种;在塑料件加工期,喷涂工艺的R值比非喷涂工艺高31%,正己醛是最主要的臭氧贡献物种.苯系物对二次有机气溶胶(SOA)生成潜势贡献起主导作用.在臭氧控制的背景下,不仅排放浓度高的喷涂工艺需受到控制,对于标准化反应活性大的其他工艺也需关注.  相似文献   

6.
天津临港某仓储公司VOCs排放特征及臭氧生成潜势   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究储运环节VOCs的排放影响,参考HJ 732-2014《固定污染源废气挥发性有机物的采样气袋法》,选择天津临港工业园区某石化业仓储公司为重点监测对象,对企业的厂界上下风向、有组织和无组织排放源进行采样,利用在线仪器PTR-TOF-MS对采集的样品进行VOCs定量分析,并对厂界处O3-NOx -VOCs三者的关系和污染物的臭氧生成潜势进行研究.结果表明:有组织排放源——洗涤塔、活性炭吸附塔1号和2号的∑ρ(VOCs)(所有VOCs组分浓度之和)分别为18.91、71.48和5.65 mg/m3,无组织排放源——罐组和装卸车台∑ρ(VOCs)分别为0.39和0.087 mg/m3;甲醇为企业的特征污染物,此外还有烷烃和少量的烯烃,有组织排放中活性炭吸附塔2号是影响厂界污染特征的主要环节;有组织和无组织VOCs排放量分别为0.57和214.26 t/a.对O3-NOx-VOCs三者关系的分析显示,企业厂界处O3的形成主要受VOCs控制,其臭氧生成潜势为烯烃>醇类>烷烃,除考虑醇类的影响外,烯烃也是不可忽视的环境影响因素.   相似文献   

7.
该文以2020年5-10月烟台市117种VOCs监测数据为基础,对烟台市VOCs污染特征、臭氧生成潜势及污染来源进行分析。研究表明:烟台市VOCs平均体积分数为27.70×10~(-9)(75.43μg/m~3),VOCs体积分数月际波动较小,在25.61×10~(-9)~30.54×10~(-9)之间。烟台市VOCs化学组成由高到低排序,依次为烷烃OVOCs卤代烃芳香烃烯烃炔烃有机硫,其中烷烃和OVOCs比重最大,二者之和占总VOCs的68.5%;VOCs体积分数最高的3种组分依次为甲醛、丙烷、丙酮。烟台市VOCs组分的总OFP值为177.41μg/m~3,臭氧生成潜势量表现为OVOCs芳香烃烯烃烷烃炔烃卤代烃有机硫,OFP值排名前3的组分分别是甲醛、乙醛、甲苯。烟台市大气中芳香烃主要受机动车排放影响,同时工业排放影响也不可忽略;羰基化合物主要受机动车尾气和人为源影响。  相似文献   

8.
淄博市重点工业行业VOCs排放特征   总被引:10,自引:9,他引:1  
王雨燕  王秀艳  杜淼  白瑾丰  杨文 《环境科学》2020,41(3):1078-1084
为研究淄博市重点工业行业的VOCs排放特征,筛选出9个重点行业,选择各行业代表性企业进行实地调研和采样,分析了不同行业的VOCs排放特征,通过实测法计算了各企业的VOCs排放量,并在此基础上得到本地化排放因子.结果表明,不同行业的VOCs排放特征存在一定差异,多数行业以烷烃、卤代烃为主;乙烷、乙炔、氯乙烷类(包括1,1-二氯乙烷、 1,1,1-三氯乙烷)以及氟利昂类(氟利昂12或氟利昂114)为大多数行业均含有的主要特征物种;分环节排放量计算结果显示,设备动静密封点泄漏、有机液体装卸挥发损失、有机液体储存与调和挥发损失以及工艺有组织排放为不同类型石化行业的VOCs主要排放环节,排放量占比均达到40%以上;合成橡胶与炼钢行业的VOCs本地化排放因子与已有规范中的推荐值相近,其余行业则存在较大差距.  相似文献   

9.
通过苏玛罐采样和GC-MS/FID分析系统,测定了山东地区典型胶合板制造企业的VOCs排放特征.结果表明,烷烃(13.81%~39.16%)、含氧VOCs(5.68%~36.06%)和芳香烃(3.58%~48.12%)是热压和涂胶工艺主要排放成分,废气排口以含氧VOCs(6.49%~83.88%)排放为主,不同工艺环节的特征VOCs组分各有不同;烯炔烃(27.12%~39.38%)和芳香烃(32.47%~45.63%)是热压工艺和涂胶工艺的高OFP组分,废气排口则以含氧VOCs(52.82%)对O3生成贡献最大;基于SOAP评估,各环节均以芳香烃类化合物(97.08%~98.03%)为主要活性组分;测得山东地区胶合板制造行业VOCs排放因子为0.89g VOCs/m3胶合板.  相似文献   

10.
吴健  高松  陈曦  杨勇  伏晴艳  车祥  焦正 《环境科学》2020,41(4):1582-1588
采用不锈钢采样罐对华东地区8家涂料制造企业生产车间排口进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了106种VOCs组分,识别了VOCs排放特征,建立了溶剂型涂料和水性涂料VOCs排放成分谱,分析了VOCs对臭氧生成的贡献.结果表明,涂料制造行业VOCs特征组分主要为芳香烃和含氧烃,两者浓度范围在65.5%~99.9%,溶剂型涂料VOCs排放主要以芳香烃为主,占总VOCs的63.0%~94.0%;水性涂料VOCs排放主要以含氧烃为主,占总VOCs的54.5%~99.9%.间/对-二甲苯(32.4%)、乙苯(19.0%)和乙酸乙酯(12.1%)为溶剂型涂料源排放特征,乙酸乙酯(83.7%)与2-丁酮(8.0%)为水性涂料源排放特征.芳香烃和含氧烃是涂料制造行业的主要活性组分,对臭氧生成潜势(OFP)的总贡献率在92.9%~99.9%之间.源反应活性分析(SR)表明,水性涂料单位质量VOCs对臭氧的生成贡献低于溶剂型涂料,因此可显著降低臭氧的生成潜势.研究显示,针对涂料制造行业VOCs污染治理,应重点关注芳香烃和含氧烃中对臭氧生成潜势贡献较大的VOCs组分,进行源头和精细化控制.  相似文献   

11.
为研究石化行业VOCs的排放特征及其环境影响,选取山东省3家典型地方炼化企业开展样品采集和物种分析,并利用MIR(最大增量反应活性)法和SOAP(二次有机气溶胶生成潜势)法量化其对二次污染生成的贡献.结果表明,不同生产类型企业VOCs排放组成差异较大.从体积浓度来看,企业A各采样点位以芳香烃(30.4%~92.2%)为主要排放化合物;企业B排放以烷烃(15.4%~53.8%)、烯炔烃(11.4%~71.7%)和含氧VOCs(0.1%~53.8%)为主;企业C则主要排放烷烃(6.1%~95.3%)和烯炔烃(1.2%~93.1%).从合成源谱来看,企业A以芳香烃为主要化合物,乙苯、苯、苯乙烯、甲苯为高排放物种;企业B中烷烃、烯炔烃和含氧VOCs均有较高占比,1-丁烯、甲基乙基酮、反-2-丁烯、异丁烷、甲苯为主要物种;企业C则主要排放烷烃类化合物,包括异丁烷、丙烷、环戊烷.OFP(臭氧生成潜势)评估结果表明,芳香烃化合物包括乙苯、苯乙烯、苯和甲苯,其对企业A的贡献最大;企业B中,烯炔烃化合物包括1-丁烯、反-2-丁烯、异戊二烯,其OFP占比最高;企业C则以烯炔烃和烷烃为高贡献化合物,其中丙烯、异丁烷、间/对-二甲苯、顺-2-丁烯为关键活性物种.SOAP评估结果表明,各企业SOA(二次有机气溶胶)的生成均由芳香烃主导,关键活性物种为甲苯、苯乙烯、苯、间/对-二甲苯.研究显示,地方炼化企业所排的VOCs组分复杂且存在显著的工艺差异,应根据筛选出的关键活性组分制定针对性的VOCs减排策略.   相似文献   

12.
天津临港石化企业VOCs排放特征及环境影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究化工园区VOCs排放特征及其环境影响,选取天津临港工业区内典型企业A、B、C、D、E进行重点监测,对其有组织、无组织排放各环节、厂界和敏感点的VOCs种类和浓度进行定性和定量分析,并利用偏相关分析方法对其厂界和敏感点进行环境影响因素研究.结果表明,企业A、B、D、E有组织排放的ρ(总VOCs)分别为2.32、1.16、3.30、35.85 mg/m3,其主要污染物分别为环己烷及其同分异构体、丙烯、丙烯腈、甲醇.企业A、B、C、D的无组织排放均以烷烃为主,主要污染物为甲基己烷及其同分异构体、正壬烷;企业E的无组织排放以醇类和烷烃为主,主要污染物为甲醇、正十一烷和乙烷.敏感点的主要污染物与各企业的主要污染物相似.研究显示,企业A、D、E的有组织排放ρ(总VOCs)比无组织大,分别以烷烃、氰化物和醇类为主,企业B、C以无组织烷烃排放为主.无组织排放是影响企业厂界ρ(VOCs)的主要因素;以生产丙烯为主的企业B对敏感点影响最大,相关系数为0.582(P≤0.01),是影响园区敏感点的主要污染源.   相似文献   

13.
基于调研文献测试数据,对不含含氧有机物(oxygenated volatile organic compounds,OVOCs)组分的源成分谱进行修订和重构,得到归一化的VOCs源成分谱,根据2015年四川省大气污染源排放清单建立了基于源成分谱的1 km×1 km VOCs组分排放清单,并估算其臭氧生成潜势以评估对臭氧生成的影响.所建立的VOCs源成分谱库包括45个源成分谱和519种组分,由于针对富含OVOCs的生物质燃烧和汽车排放等源类进行了修订和重构,因此所建立的源成分谱库对于VOCs组分清单构建和源解析具有更好地应用性.VOCs组分清单结果表明,四川省人为源VOCs总排放量为773.8 kt,其中烷烃、烯烃、炔烃、芳香烃、OVOCs、卤代烃和其它VOCs分别占VOCs总排放量的21.6%、10.0%、1.7%、28.0%、26.2%、4.2%和8.3%,总臭氧生成潜势(ozone formation potential,OFP)为2584.9 kt,上述各类VOCs分别占总OFP的6.9%、26.1%、0.5%、42.3%、23.2%、0.4%和0.5%.四川省各城市VOCs排放组分均以芳香烃、OVOCs和烷烃为主,但亦存在显著差异:成都、雅安、阿坝、甘孜和凉山机动车排放贡献较大,烷烃排放量占VOCs排放总量的比例较高;攀枝花为工艺过程源贡献较大的重工业城市,烷烃排放量占比较高;德阳、眉山、遂宁和资阳溶剂使用源排放较大,OVOCs排放量占比较高.四川省VOCs排放量和OFP较大的组分主要集中分布于人口和工业较为密集和发达的四川盆地区域以及凉山和攀枝花的部分地区,其中间-二甲苯和甲苯主要贡献源为溶剂使用源,导致其在城市建成区的分布更为集中,生物质燃烧对乙烯和甲醛排放有大量贡献,造成其在农业发达的川东和川南的耕地区域有大量分布.  相似文献   

14.
利用在线GC-MS/FID,对重庆主城区2015年夏、秋季大气挥发性有机物(VOCs)开展了为期1个月的观测.结果发现,监测期间主城区总挥发性有机物(TVOCs)体积分数为41.35×10-9,烷烃占比最大,其次是烯炔烃、芳香烃和含氧性挥发性有机物(OVOCs),卤代烃占比最小.将本次研究结果同以往研究结果比较发现,高乙炔浓度可能受交通源排放的影响,而乙烯和乙烷浓度的大幅度降低则得益于主城区化工企业的大举搬迁.通过最大增量反应活性(MIR)估算VOCs的臭氧生成潜势(OFP)发现,芳香烃(32.1%)和烯烃(30.6%)对臭氧生成的贡献最为显著,其中以乙烯、乙醛和间/对二甲苯的OFP最强,因此,对烯烃和芳香烃的削减能有效控制大气中O3的生成.通过PMF模型共解析出5个因子,主要为生物源及二次生成、其他交通源、天然气交通源、溶剂源和工业源.从5个因子对VOCs的贡献百分比可以看出,重庆城区交通源贡献最大(50.4%),其次是工业源和溶剂源的贡献(30%),生物源及二次生成的贡献最小.  相似文献   

15.
为研究标准件行业VOCs排放特征及其环境影响,选取了典型标准件企业进行现场调研与采样,运用GC-MS/FID测定了废气中102种VOCs物种,建立了标准件行业VOCs源成分谱,并估算了行业VOCs的环境污染影响、排放因子及排放量.结果表明,标准件行业各工序VOCs均以烷烃(29.58%~68.94%)为主要排放组分.正...  相似文献   

16.
基于LHS-MC青岛市工业源VOCs排放清单及不确定性   总被引:2,自引:1,他引:1  
徐琬莹  付飞  吕建华  李瑞芃  邵蕊  和慧  李淑芬  左华 《环境科学》2021,42(11):5180-5192
采用自下而上法,逐一采集企业活动水平,抽样调查企业获取治理措施变量,使用优化后的排放系数法建立青岛市工业源VOCs排放清单,同时将MC和LHS方法联合,模拟单变量和多变量对VOCs清单不确定性影响.结果表明,2019年青岛市工业源VOCs排放总量为4.47万t (未优化排放系数法:3.11万t),排放贡献较大行业依次为橡胶与塑料制品业、金属制品业、石油/煤炭及其他燃料加工业,占总量40.26%.多变量模拟的不确定性高于单变量,工艺过程源(-9.72%~230.51%)和溶剂使用源(-14.14%~122.77%) VOCs清单的不确定性明显高于燃烧源(-15.62%~36.41%).影响VOCs清单不确定性的行业和主要因素为:化工、造纸和纺织(排放因子);金属制品、汽车制造和化工(去除率和设施运行率);石油加工和黑色金属冶炼(样本数少).VOCs排放主要集中在:西海岸新区东部、大珠山北部、即墨区南部、城阳区北部、胶州市东北部、平度市建成区和莱西市东南部.  相似文献   

17.
VOCs(挥发性有机物)现已被列为我国大气环境领域的核心污染物.随着汽车零配件制造行业减排要求的提出,于2018年6月选取典型汽车零配件制造企业,采用美国TO-15方法分析VOCs物种,采用FID(氢离子火焰检测器)对NMHC(非甲烷总烃)进行实测,分析汽车零配件涂装过程的VOCs排放特征.结果表明:①由于分析方式的不同,有组织排放的ρ(NMHC)比ρ(VOCs)高1.3~1.9倍,其中末端未安装VOCs处理设施的排气筒排放的ρ(NMHC)最高.②汽车零配件涂装过程排放的主要VOCs物种质量浓度占比范围分别为46.72%~98.33%(芳香烃)、1.20%~52.90%(含氧VOCs),其中ρ(二甲苯)、ρ(苯系物)超标(DB 31/933—2015《大气污染物综合排放标准》)情况较为严重.③未进入VOCs处理装置前的VOCs物种组成与原辅料中VOCs物种组成一致,二者主要VOCs物种的质量分数大致相同,说明生产工艺的不同对VOCs的排放组成影响较小.④比较RTO(蓄热式热力燃烧装置)和活性炭吸附装置处理VOCs前、后废气组成的差异发现,活性炭吸附装置处理对VOCs排放的组成基本无影响,经RTO处理后排放物种以芳香烃和含氧VOCs为主,但是w(芳香烃)和w(含氧VOCs)变化不一致,说明RTO对芳香烃和含氧VOCs处理效率不同.研究显示,为满足国家对汽车零配件制造行业VOCs的减排要求,源头使用高固分涂料或水性涂料替代溶剂型涂料,优化过程收集系统,增强末端处理技术的净化效果、安全性和稳定性,是实现汽车零配件制造行业全过程减排的重要手段.   相似文献   

18.
鲁君  黄奕玮  黄成 《环境科学》2019,40(11):4856-4861
以美国加州和中国台湾有害挥发性有机物(HVOCs)排污收费物种为依据,筛选8种HVOCs物种,分别为苯、甲苯、二甲苯、乙苯、苯乙烯、二氯甲烷、1,1-二氯乙烯和三氯乙烯,通过排放因子法,建立了2014年的长三角地区典型化工行业总VOCs排放清单,VOCs排放量为13. 55万t,结合工艺源项HVOCs物种排放占比,建立了长三角地区典型化工行业的HVOCs排放清单,2014年排放量HVOCs约为5. 24万t,其中占比最高的HVOCs物种为二氯甲烷和苯,HVOCs占VOCs排放较大的工艺源项为聚氨酯类树脂、烷基苯、乙苯、丙烯酸树脂、氯苯、乙苯、环己酮、乙烯及聚苯乙烯等的生产.  相似文献   

19.
我国工业源VOCs排放的源头追踪和行业特征研究   总被引:16,自引:1,他引:15       下载免费PDF全文
按照“源头追踪”思路,采用排放因子法,对我国工业源VOCs排放量进行了计算.工业VOCs污染产生于4个环节:VOCs的生产,储存和运输,以VOCs为原料的工艺过程,含VOCs产品的使用和排放.结果表明, 2009年我国工业源VOCs排放量约为1206万t.4个环节的污染排放贡献分别为18.1%、6.8%、24.7%和50.3%.合成材料生产、石油炼制和石油化工、机械设备制造等17个排放源的年排放量达20万t以上,其排放量之和占全国总排放量的94.9%.2007~2009年我国工业源VOCs排放量分别为1023,1079,1206万t,年均增长率8.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号