首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
对杨家幛子钼矿区土壤重金属污染的情况进行了详细研究。选择土壤样本80个,采用HNO3-HF-HClO4混酸对土壤样品进行处理,运用等离子体发射光谱仪(ICP-AES)测定土壤样品中Pb、As、Hg、Cr、Cd、Zn、Cu、Ni、Mo的含量,全面系统地评价土壤重金属污染现状。结果表明,该矿区土壤重金属As、Cd和Hg污染较为严重,平均含量分别达154.13、74.92和3.06mg/kg。不同片区间存在明显差异,污染强度以矿山山沿污染最高,其次是运输区、选矿厂及矿区附近山地,内梅罗综合指数分别为59.98、59.33、52.14、42.44。  相似文献   

2.
通过在某矿区采集农田土壤和菠菜样品,分析其中重金属含量,基于相关性分析和PMF模型对该矿区农田土壤重金属来源进行解析。结果表明,研究区土壤中Cd、As、Zn、Cr和Cu 元素明显富集,分别是当地土壤背景值的5.7倍、4.4倍、2.4倍、1.5倍和1.3倍;相关性分析结果显示,研究区内Cu、Zn、As、Cd元素存在一定的相关性,可能具有同一污染源;PMF模型结果说明,研究区土壤中重金属主要来源分别为工业污染源、自然母质源、交通污染源和农业污染源,其对当地土壤重金属污染贡献率分别为39.8%、22.8%、21.6%和15.8%。  相似文献   

3.
锰矿开采产生重金属污染,对周围环境造成影响,有必要对矿区重金属进行监测。研究以典型碳酸盐型锰矿——南茶锰矿(按职能划分为4个功能区:矿井区、废石区、选矿区、蓄矿区)为对象,以区域内真藓Bryum argenteum为材料,结合相关分析、聚类分析、主成分分析、变异系数等方法考察了真藓和土壤中重金属的含量及其可能的来源。结果表明:各功能区均受到不同程度的人为干扰,人为干扰越强,区域污染越严重。在不同污染梯度的功能区内,真藓的重金属(Fe、Mn、Zn、Cr、Ni、Ba、Co、Mo、Hg、Pb、Cd、Cu、Tl、As、Sb)含量与土壤重金属含量显著正相关(P<0.05),说明真藓是监测碳酸盐型锰矿重金属污染的有效指标。真藓指示南茶锰矿除了可能受到采矿活动的强烈影响外(Mn、Cu、Fe、Zn、Cr、Ni、Mo、Ba),还受到来自运输车辆的机械磨损、排放及采矿活动的复合污染(Tl、Cd、Pb、As、Sb),识别结果与区域重金属分布情况吻合,表明真藓具有识别重金属污染的能力。在今后碳酸盐型锰矿污染防治工作中,可将真藓作为重金属污染监测的生物材料。  相似文献   

4.
黔西北土法炼锌矿区重金属污染现状及其环境影响评价   总被引:4,自引:1,他引:3  
在对黔西北土法炼锌四个矿区周围的土壤和植物(蔬菜和作物等)进行全面调查的基础上,对土壤和植物重金属(Zn、Cd、Pb、Cu和As)污染现状进行了监测与初步评价.结果表明,四个土法炼锌矿区除野马川的土壤属于中度污染外,其余全部处于严重污染状态,并且Cd是每个矿区的主要污染元素;土法炼锌矿区周围的蔬菜已全部受到严重污染,综合污染指数在10.83~40.67之间,属于重度污染,蔬菜污染主要以Cd为主,超过国家食品卫生标准54倍;矿区周围其他植物如土豆、玉米和绿肥等中的重金属亦严重超标,主要以Pb污染为主,超过国家食品卫生标准366.75倍.说明矿区土壤中种植作物的生长及食用安全已经受到重金属污染的严重影响,对居民健康构成潜在威胁.  相似文献   

5.
用环境磁学方法对甘肃徽县铅锌矿区典型耕地污染土壤、自然土壤和修复土壤进行监测研究,结果表明:污染土壤的磁化率(χlf)与频率磁化率(χfd)呈显著的负相关,表明污染土壤磁性增强主要由铅锌矿厂在选矿冶炼过程中释放的含铁矿物所致;污染土壤χlf值在0 cm~30 cm深度范围内最高,污染严重;χlf值在30 cm~60 cm深度范围内明显降低,污染程度减弱;在60 cm~70 cm深度范围内与自然土壤的χlf值接近,污染基本消失。土壤污染程度随深度增加而降低,污染深度范围为0 cm~60 cm;从污染土壤、修复土壤到自然土壤χlf值依次降低,且污染土壤χlf值与重金属元素Pb、Zn等的变化趋势一致。  相似文献   

6.
以广东某典型铅锌矿周边地区为研究区域,通过实地监测空气中颗粒物重金属浓度水平,并结合暴露量计算,进行健康风险评价。结果表明:研究区大气TSP浓度满足所属功能区环境空气质量标准要求,但PM10浓度在个别监测点出现有单次超标现象,铅平均浓度符合年平均参照标准要求,镉平均浓度则超年平均参照标准要求;颗粒物重金属分析表明,该区域气象扩散条件较好,对照点中重金属含量与其他监控监测点的含量相当;靠近冶炼厂或铅锌矿的降尘重金属总量比远离的高,所以冶炼厂和铅锌矿对环境大气中重金属含量还是有一定的影响。大气颗粒物重金属暴露人群风险评价结果表明,研究区域不存在非致癌健康风险,但个别监测点则存在镉致癌风险警戒级别。  相似文献   

7.
赣东北德兴矿区周边女性居民头发中重金属分布特征   总被引:4,自引:0,他引:4  
应用ICP-MS/AFS测定江西德兴矿区(铜矿和铅锌矿)周边地区祝家村和戴村女性居民头发中重金属含量。探讨了河水、土壤、饮用水、人发中的重金属分布,着重分析了人发中重金属含量与年龄间的关系,指出最易受环境污染危害的人群。研究表明,人发中重金属含量与人所处的地质环境密切相关,人发中重金属含量主要受控于地质环境中某个(些)主导因素。不同年龄段人群重金属元素的分布对矿山开发环境的响应不同。人发中一些有害元素(Pb、Cd)在儿童组(15岁以下)普遍表现为高含量。这说明矿山开发释放的污染元素对儿童的危害最大。不同地区不同元素与年龄间的关系不同。人发重金属含量与年龄关系较为复杂,不存在统一的结论,应具体情况具体分析。  相似文献   

8.
钼矿区周边农田土壤中重金属污染状况的分析与评价   总被引:4,自引:1,他引:3  
对钼矿区周边农田土壤重金属污染情况进行了详细研究.选择该矿区受污染农田土壤样本80个,采用HNO3-HF-HClO4混酸对土壤样品进行处理,运用欧共体参比司推荐的BCR三步连续提取法进行化学形态分析;使用等离子体发射光谱仪(ICP-AES)测定土壤样品中Mo、Pb、As、Hg、Cr、Cd、Zn、Cu、Ni的全量及各种化学形态的含量并进行评价,同时对矿区地下水进行分析;采用spas软件进行数据分析.结果表明,矿山周边农田土壤重金属主要污染物为Cd、Hg并伴有Cr污染;Nemerow综合指数6.81,综合评价结果为该区土壤已受严重污染;Cd与As污染来源基本相同,Cu、Ni、Zn污染来源基本相同,Hg有独立的污染来源;重金属中化学形态分布为残余态>有机结合态>氧化结合态>酸可提取态;重金属Cr及Hg的有效态比例较大,可能会影响农作物的正常生长;矿山周边农田土壤重金属污染的原因可能是污染地下水的浇灌,矿石的开采、运输和大气降尘等过程;有机农药及塑料农用制品的施用过程,自然成土、矿物的伴生及其转化等过程.  相似文献   

9.
江苏省某城市由于规划发展的需要,陆续搬迁了一批高污染的化工企业。现调查发现其中一家化工厂原厂址存在严重的重金属污染问题,现采集多个表层土壤样品,对样品中的多种重金属(Pb,Cu,Cr,Ni,Zn和Cd)的总量进行分析测试,发现搬迁区土壤重金属累积效应显著,除Zn和Ni外,其它重金属平均含量均超过其背景值,其中Cd的含量是其背景值的324倍,Pb是背景值的1.8倍。重金属的富集顺序为PbCrZnCdCuNi.不同功能区各种重金属的平均含量均不同,其中仅以绿地重金属累积最少,生产区、排放区和设备维修区累积较为严重,为高浓度污染区。生产活动和处理排放已成为影响研究区土壤环境质量的主要因素;研究区土壤具有极强的重金属污染潜在生态危害,其中Cd为极强潜在生态危害。所以,该企业搬迁区土壤重金属积累显著,Pb,Cd和Cr将是该企业原址厂土壤的重点污染物,需要重点控制和修复。  相似文献   

10.
铅冶炼区土壤重金属总量和有效态含量的函数分析   总被引:1,自引:0,他引:1  
采集铅冶炼企业周边3 000 m范围内220个表层土壤样品,测定了有毒有害元素铅、镉、砷和汞的总量和有效态含量,探讨了它们之间的关系。结果表明:研究区土壤受到汞、砷、铅、镉的污染依次明显严重,土壤重金属的总量和有效态含量的变异系数均大于100%,土壤镉、铅、汞、砷的生物有效性系数平均值分别为25.9%、17.2%、0.58%、0.11%。土壤铅、镉和砷的总量与其有效态含量呈显著正相关(P0.001),而汞的总量与其有效态含量的相关性不显著(P0.05)。土壤铅和镉的总量和有效态含量可以用直线函数和幂函数表达,函数反推的有效态值和对应统计值的变异系数不大于10%。  相似文献   

11.
In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg(-1), respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.  相似文献   

12.
徽县铅锌冶炼区土壤中重金属的空间分布特征   总被引:4,自引:3,他引:1  
采集甘肃省徽县铅锌冶炼区域土壤样品,分析该区域内重金属污染分布规律及污染特征。结果表明,表层土壤中Pb、Cd、Cu、Zn的平均含量分别为214、3.12、25.8、79.5 mg/kg。研究区域内重金属的分布特征显示,污染浓度由冶炼厂中心向四周递减。纵向0~30 cm范围内重金属含量逐渐降低,大部分重金属污染物集中在土壤表层的0~20 cm区域,其中0~2 cm区域内含量较高,Pb和Cd的最高含量分别达到3 877、24.8 mg/kg,与国家土壤环境质量二级标准(p H 6.5~7.5)(GB 15618—1995)相比,分别超标13、82倍,属于重度污染。重金属元素的分布与土壤有机碳含量及p H相关。冶炼厂周围的重金属污染应引起有关部门的高度重视,严格控制污染源,尽快采取措施以防止污染范围进一步扩大。  相似文献   

13.
The aim of this study was to characterize soils contaminated by different levels of heavy metals and hydrocarbons (Madonna Dell'Acqua, Pisa, Italy). The soils were chemically and biochemically analysed by measuring the standard chemical properties and some enzyme activities related to microbial activity (dehydrogenase activity) and the soil carbon cycle (total and extracellular beta-glucosidase activities). The metabolic capacities of soil microorganisms to degrade hydrocarbons through catechol 2,3-dioxygenase were also described. The microbial diversity of contaminated and uncontaminated soils was estimated by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences. The PCR/single-strand conformation polymorphism (PCR/SSCP) method was used to estimate the genetic diversity of PAH-degrading genes in both contaminated and uncontaminated soils. A greater bacterial diversity and lower catechol 2,3-dioxygenase activity was detected in unpolluted soils. The complexity of the microbial community (Shannon and Simpson indices) as well as the dehydrogenase soil activity negatively correlated with contamination levels. The greatest PAH-degrading gene diversity and the most intense catechol 2,3-dioxygenase activity were found in the soils with the highest levels of hydrocarbons. Heavy metals and hydrocarbon pollution has caused a genetic and metabolic alteration in microbial communities, corresponding to a reduction in microbial activity. A multi-technique approach combining traditional biochemical methods with molecular-based techniques, along with some methodological improvements, may represent an important tool to expand our knowledge of the role of microbial diversity in contaminated soil.  相似文献   

14.
Understanding regional variations of soil heavy metals and their anthropogenic influence are very important for environmental planning. In this study, 286 surface soil samples were collected in Fuyang county, and the 'total' metals for copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were measured in 2005. Statistic analysis showed that Cu, Zn, Pb and Cd had been added by exterior factors, and Ni was mainly controlled by natural factors. The combination of multivariate statistical and geostatistical analysis successfully grouped three groups (Cu, Zn and Pb; Cd; and Ni) of heavy metals from different sources. Through pollution evaluation, it was found that 15.76% of the study area for Cu, Zn and Pb, and 46.14% for Cd suffered from moderate or severe pollution. Further spatial analysis identified the limestone mining activities, paper mills, cement factory and metallurgic activities were the main sources for the concentration of Cu, Zn, Pb and Cd in soils, and soil Ni was mainly determined by the parent materials.  相似文献   

15.
The pollution of soil is a source of danger to the health of people, even to those living in cities. The anthropogenic pollution caused by heavy industries enters plants then goes through the food chain and ultimately endangers human health. In the context, the knowledge of the regional variability, the background values and anthropogenic vs. natural origin of potentially harmful elements in soils is of critical importance to assess human impact. The present study was undertaken on soil contamination in Surat, Gujarat (India). The aims of the study were: i) to determine extent and distribution of heavy metals (Ba, Cu, Cr, Co, Ni, Sr, V and Zn) ii) to find out the large scale variability, iii) to delineate the source as geogenic or anthropogenic based on the distribution maps and correlation of metals in soils. Soil samples were collected from the industrial area of Surat from top 10 cm layer of the soil. These samples were analysed for heavy metals by using Philips PW 2440 X-ray fluorescence spectrometer. The data reveal that soils in the area are significantly contaminated, showing higher levels of toxic elements than normal distribution. The heavy metal loads of the soils in the study area are 471.7 mg/kg for Ba, 137.5 mg/kg for Cu, 305.2 mg/kg for Cr, 51.3 mg/kg for Co, 79.0 mg/kg for Ni, 317.9 mg/kg for Sr, 380.6 mg/kg for V and 139.0 mg/kg for Zn. The higher concentrations of these toxic metals in soils need to be monitored regularly for heavy metal enrichment.  相似文献   

16.
Because of past mining activities, the floodplains of the River Geul are polluted with heavy metals. The continuous supply of fresh sediments during floods has caused the floodplain soils to exhibit large quality variations in time. By measurements of 137Cs deposition rates in part of the floodplain area were determined at 0.4 to 2.7 cm yr–1. Analysis of soil metal concentrations at various depths at 65 locations, revealed that the upper 40 cm of the soil profile deposited during the past 30–45 yr, exhibit the highest metal levels. The geostatistical interpolation technique kriging was used to map actual and past pollution patterns. It was shown that, as a result of variable deposition rates, the spatial correlation structure of soil metal concentrations becomes less clear with increasing depth/age. Kriged maps of average metal concentrations in the upper 100 cm of the soil profile provided the basis for the calculation of the mass storage of heavy metals.  相似文献   

17.
As well known, at normal levels, copper and zinc are essential micronutrients for plants, animals, and humans. However, excessive Cu and Zn are toxic and disturb a wide range of biochemical and physiological processes. Using Atomic Absorption Spectrophotometer (AAS; Perkin-Elmer 3030, USA), soil and rice plant (Oryza sativa L.) samples collected from a paddy field in Lechang lead-zinc mine area, Guangdong Province, China were analyzed and their potential ecological impacts to local human and livestock were evaluated. The results showed that the paddy soils were contaminated with Cu and Zn. Both metals in soils had low bio-available fractions for paddy plants, animal and human by three chemically analytical techniques. Generally, were concentrations of copper and zinc root > straw > stalk > grain with hull > grain without hull (i.e. unpolished rice) and in the normal ranges indicating no ecological risk for local livestock and residents. All positive correlation coefficients, however, between heavy metals in rice plant and total, exchangeable (step 1 in Tessier's method established in 1979) and DTPA-extractable fractions in soils were found in this study indicating that elevated heavy metal in soils would increase long-term exposition and possible consequence of ecological hazard through food chains.  相似文献   

18.
The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb–Zn–Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg − 1, 20 g kg − 1 and 200 mg kg − 1 for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange capacity. The mobilization of Pb, Zn and Cd in soils depends on the persistence of the metal-containing particles in the atmosphere; the longer the time, the more abundant the stable forms. The dumped mining/smelting waste is less risk of easily mobilizable metal forms, however, downward metal migration especially due to the periodical leaching of the waste was observed.  相似文献   

19.
There is a growing concern over the potential accumulation of heavy metals in soils owing to rapid industrial and urban development and increasing reliance on agrochemicals in the last several decades. These metals can infiltrate through the soil thereby causing groundwater pollution. Surface soil samples (5 to 15 cm) collected from southeastern part of Ranga Reddy district were analyzed for 14 heavy metals (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, V, Y, Zn and Zr) using Philips PW 2440 X-ray fluorescence spectrometer. Results for heavy and trace elements are reported for the first time in soils for this region. The contamination of the soils was assessed on the basis of enrichment factor (EF), geoaccumulation index (I (geo)), contamination factor and degree of contamination. The results reveal that variations in heavy element concentrations in the soil analyzed have both geogenic and anthropogenic contribution, due to the long period of constant human activities in the study area. The concentration of the metals Ba, Rb, Sr, V, Y and Zr were interpreted to be mainly inherited from parent materials (rocks) and the As, Co, Cr, Cu, Mo, Ni, Pb and Zn concentrations show contribution from geogenic and anthropogenic sources. The major element variations in soils are determined by the composition of the parent material predominantly involving granites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号