首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Antimony is more than an emerging pollutant in water but a scare resource. In this study, we report an adsorbent with the record capacity so far from the balanced view of Sb(III) and Sb(V). The composite adsorbent was fabricated by encapsulating hollow Fe3O4 nanosphere with the EDTA grafted chitosan, and it has superhigh adsorption capacity of for 657.1 mg/g for Sb(III) and 467.3 mg/g for Sb(V), respectively. The mechanism study reveals that the adsorption of Sb initializes from the Fe3O4, propagates along the chitosan with hydrogen bond, and terminates at the inner sphere complex with the EDTA moiety in the adsorbent. In view of the ultra-high adsorption capacity of the adsorbent, the recovered adsorbent that contains abundant (>36.4%) highly dispersed antimony nanoparticles (600-FCSE-Sb) is applied to Li-ion battery anode after reduction. This article provides a new idea for connecting water treatment and electric energy storage.  相似文献   

2.
The arsenic removal efficiency of iron-modified activated carbons depends greatly on the number of available iron oxide surface sites, which are given by the surface area of the anchored particles. In this sense, aiming the generation of an adsorbent with superior arsenic adsorption capacity, we developed a protocol to anchor interconnected fibrils of iron oxyhydroxides, using Mn2 + as a morphology regulator. The protocol was based on a microwave-assisted hydrothermal method, using bituminous based activated carbon and both Fe2 + and Mn2 + ions in the hydrolysis solution. The elemental analysis of modified carbons revealed that Mn does not anchor to the carbon. However, when Mn is included in the hydrolysis solution, the iron content in the activated carbon increased up to 3.5?wt%, without considerable decreasing the adsorbent surface area. Under specific hydrothermal conditions, the Mn2 + promoted the formation of iron oxide nanoparticles shaped as interconnected fibrils. This material showed a superior arsenic adsorption capacity in comparison to similar iron modified activated carbons (5?mg As/g carbon, at 2?mg As/L), attributed to the increase in quantity and availability of active sites located on the novel interconnected fibrils of iron oxyhydroxides nanostructures.  相似文献   

3.
As an effective conventional absorbent, biochar exhibited limited adsorption ability toward small hydrophobic molecules. To enhance the adsorption capacity, a novel adsorbent was prepared by immobilizing nanoscale zero-valent iron onto modified biochar (MB) and then the elemental silver was attached to the surface of iron (Ag/Fe/MB). It''s noted that spherical Ag/Fe nanoparticles with diameter of 51 nm were highly dispersed on the surface of MB. As the typical hydrophobic contaminant, carbon tetrachloride was selected for examining the removal efficiency of the adsorbent. The removal efficiencies of carbon tetrachloride by original biochar (OB), Ag/Fe, Ag/Fe/OB and Ag/Fe/MB were fully investigated. It''s found that Ag/Fe/MB showed higher carbon tetrachloride removal efficiency, which is about 5.5 times higher than that of the OB sample due to utilizing the merits of high adsorption and reduction. Thermodynamic parameters revealed that the removal of carbon tetrachloride by Ag/Fe/MB was a spontaneous and exothermic process, which was affected by solution pH, initial carbon tetrachloride concentration and temperature. The novel Ag/Fe/MB composites provided a promising material for carbon tetrachloride removal from effluent.  相似文献   

4.
In this work, we proposed a green and cost-effective method to prepare a graphene-based hyper-cross-linked porous carbon composite (GN/HCPC) by one-pot carbonization of hyper-cross-linked polymer (HCP) and glucose. The composite combined the advantages of graphene (GN) and hyper-cross-linked porous carbon (HCPC), leading to high specific surface area (396.93 m2/g) and large total pore volume (0.413 cm3/g). The resulting GN/HCPC composite was applied as an adsorbent to remove 2,4-dichlorophenol (2,4-DCP) from aqueous solutions. The influence of different solution conditions including pH, ionic strength, contact time, system temperature and concentration of humic acid was determined. The maximum adsorption capacity of GN/HCPC composite (calculated by the Langmuir model) could reach 348.43 mg/g, which represented increases of 43.6% and 13.6% over those of the as-prepared pure GN and HCPC, respectively. The Langmuir model and pseudo-second-order kinetic model were found to fit well with the adsorption process. Thermodynamic experiments suggested that the adsorption proceeded spontaneously and endothermically. In addition, the GN/HCPC composite showed high adsorption performance toward other organic contaminants including tetracycline, bisphenol A and phenol. Measurement of the adsorption capability of GN/HCPC in secondary effluent revealed a slight decrease over that in pure water solution. This study demonstrated that the GN/HCPC composite can be utilized as a practical and efficient adsorbent for the removal of organic contaminants in wastewater.  相似文献   

5.
载铁(β-FeOOH)球形棉纤维素吸附剂去除地下水As(Ⅴ)的研究   总被引:4,自引:2,他引:2  
制备了一种载铁(β- FeOOH)球形棉纤维素吸附剂,球珠孔隙度大,强度好,活性成分铁的载入量可高达360mg/mL ,(质量分数达50%) ,活性好.研究表明,当铁含量为220mg/mL时,该吸附剂对As(V)的最大吸附量为15.6mg/mL(33.2mg/g) ,Langmuir和Freundlich方程能很好地描述吸附等温线.吸附速度较快,10h可达到吸附平衡,吸附动力学符合Lagergren二级方程.SiO32- ,SO42-,Cl-干扰离子均不影响砷的去除.柱吸附实验表明,空床停留时间为5.9min ,进水As(V)浓度为500μg/L时,As(V)的穿透体积为5000BV .吸附剂可以用1.5mol·L-1 NaOH再生,洗脱和再生效率可达90%以上.活性成分β-FeOOH形态稳定,柱操作和再生时铁无溶出.吸附剂制备方法简单,新颖,对地下水和饮用水砷去除具有较好的应用前景.  相似文献   

6.
利用新型稀土铈铁复合吸附剂去除水体腐殖质的研究   总被引:4,自引:0,他引:4  
研究了稀土铈铁复合材料(CFA)对水体中黄腐酸(FA)的去除效能和作用机制.结果表明:CFA在平衡pH3.0~6.5的范围内对FA的去除效果较好,吸附速度快,120min即达到平衡.水体中FA与砷酸根在CFA上有很强的竞争作用,当FA加入量为5mg/L~10mg/L时,砷的饱和吸附量Qo即丧失40%~50%,表明两者作用于材料相同的活性位点.吸附前后的红外谱图(FTIR)揭示了CFA表面羟基在FA去除中起着重要作用.通过Zeta电位的测定得出材料的等电点为5.6,因而pH偏酸性的条件有利于FA的去除.  相似文献   

7.
Zirconium-based metal-organic frameworks (Zr-MOFs) have attracted widespread attention due to their high specific surface area, high porosity, abundant metal active sites and excellent hydrothermal stability. However, Zr-MOFs materials are mostly powdery in nature and thus difficult to separate from aqueous media, which limits their application in wastewater treatment. In this study, PDA/Zr-MOFs/PU foam was constructed by growing Zr-MOFs nanoparticles on a dopamine-modified polyurethane foam substrate by in-situ hydrothermal synthesis as an adsorbent for removing dyes from wastewater. The results demonstrated that the polydopamine coating improves the dispersion of the Zr-MOFs nanoparticles on the substrate and enhances the interaction between the Zr-MOFs nanoparticles and the PU foam substrate. As a result, compared with Zr-MOFs/PU foam, the prepared PDA/Zr-MOFs/PU foam exhibits higher adsorption capacity for crystal violet (CV) (63.38 mg/g) and rhodamine B (RB) (67.73 mg/g), with maximum adsorption efficiencies of CV and RB of 98.4% (pH=11) and 93.5% (pH=7), respectively, at a concentration of 10 mg/L. The PDA/Zr-MOFs/PU foam can simultaneously remove CV and RB from the mixed solution. Moreover, the PDA/Zr-MOFs/PU foam still exhibits high stability and reusability after five cycles.  相似文献   

8.
The ligand exchange adsorbent could be used to remove the toxic arsenic(V) and phosphate efficiently from water even in the presence of foreign anions and possible to apply in chemical industry.  相似文献   

9.
为解决反冲洗铁锰泥粉末吸附剂(BSPA)使用后难以泥水分离问题,将除铁锰水厂生物滤池产生的反冲洗泥制成颗粒吸附剂(GA)和磁性粉末吸附剂(MPA),并对BSPA、GA和MPA的除砷性能进行了比较,通过SEM、TED、XRD、BET、FTIR等技术对3种材料进行了表征,寻找3种吸附剂之间除砷性能差异的根源.结果表明,BSPA、GA和MPA对As (V)的最大吸附容量分别为40.980,5.048,8.694mg/g,改性后的吸附材料GA和MPA对砷的吸附能力下降.BSPA是一种以纤铁矿为主的无定形结构混合物,并混有针铁矿和结晶度差的水铁矿,GA的XRD图谱中出现石英晶体和少量赤铁矿晶体的衍射峰,而MPA的主要成分为结晶程度较高的磁赤铁矿.3种材料中均存在有利于吸附的含羟基官能团.BSPA、MPA和GA的比表面积分别为253.150,238.660,43.803m2/g.物相改变且结晶程度增加、表面羟基减少和比表面积降低是导致GA和MPA的砷吸附容量比BSPA低的主要因素.  相似文献   

10.
以甘蔗渣为原料,采用水热合成法制备羟基磷灰石/蔗渣炭复合吸附剂--HBA,通过静态吸附试验研究HBA对As(Ⅴ)的吸附特性,并采用红外光谱和X射线光电子能谱对吸附前后的HBA进行表征,探讨其吸附As(Ⅴ)的机理.结果表明:HBA的比表面积为89.52 m2/g,pHzpc(零点电荷)=7.2,HBA上的羟基磷灰石的分子式为Ca10(PO46(OH)2.HBA吸附As(Ⅴ)的效果最佳pH为5.0~9.0.Langmuir等温吸附模型适合拟合HBA对As(V)的吸附等温线,25℃时Langmuir最大吸附量为6.76 mg/g,是蔗渣炭对As(Ⅴ)最大吸附量的20多倍.红外光谱分析表明,HBA含有的=C=O、─OH、─COOH等含氧官能团,可为化学吸附提供充足的吸附位点和提高HBA的吸附能力.XPS分析表明,HBA表面的含氧官能团[如羧基(─O─C=O,532.2 eV)、羟基(─OH,530.6 eV)]参与了吸附反应,羟基磷灰石能提高HBA吸附As(Ⅴ)的能力,被吸附到HBA表面上的As主要以AsO43-和HAsO42-形态存在.   相似文献   

11.
以可溶性淀粉作为稳定剂制备纳米Fe_3O_4粒子,探讨了反应时间、p H值、初始砷浓度和腐殖酸对Fe_3O_4纳米粒子吸附水体中As(V)的吸附效果影响.实验结果表明,淀粉稳定的Fe_3O_4纳米粒子对水体中As(V)的吸附动力学过程符合准二级动力学,吸附等温线符合Langmuir吸附模型;吸附容量随着溶液p H的增加逐渐降低,在p H为8.0的弱碱性水体中对As(V)的最大吸附容量可达202.56 mg·g~(-1);此外,腐殖酸(HA)能降低纳米粒子对As(V)的吸附能力.  相似文献   

12.
A Zr-β-FeOOH adsorbent for both As(V) and As(III) removal was prepared by a chemical co-precipitation method.Compared with β-FeOOH,the addition of Zr enhanced the adsorption capacities for As(V) and As(III),especially As(III).The maximum adsorption capacities for As(III) and As(V) were 120 and 60mg/g respectively at pH 7.0,much higher than for many reported adsorbents.The adsorption data accorded with Freundlich isotherms.At neutral pH,for As(V),adsorption equilibrium was approached after 3 hr,while for As(III),adsorption equilibrium was approached after 5 hr.Kinetic data fitted well to the pseudo second-order reaction model.As(V) elimination was favored at acidic pH,whereas the adsorption of As(III) by Zr-β-FeOOH was found to be effective over a wide pH range of 4-10.Competitive anions hindered the adsorption according to the sequence:phosphate > silicate > bicarbonate > sulfate > nitrate,while Ca2+ and Mg2+ increased the removal of As(III) and As(V) slightly.The high adsorption capability and good performance in other aspects make Zr-β-FeOOH a potentially attractive adsorbent for the removal of both As(III) and As(V) from water.  相似文献   

13.
采用配煤、原位浸渍和两步活化法制备了4种原位载铁活性炭(FGL1/2/3/4),并以空白炭C-GL为基础的表面铁浸渍后改性炭(Fe-GL-2/3/4)为对照,研究了原位载铁炭对水中As和腐植酸(HA)的同步吸附效能.结果表明,炭化料原位载铁促进了比表面积(SBET)和中孔结构的发育.其中,原位载铁炭FCL4(载铁量6.51%)在45Å~480Å的范围内的中孔容积(Vmes)比C-GL增加了0.1146cm3/g;而后改性载铁则造成SBET和Vmes的显著降低.原位载铁同时促进了表面碱度的增加,保证了中性条件下更好的As离子吸附能力;FCL4对As(Ⅲ)和As(V)的Langmuir最大吸附量(L-Qmax)分别达到2.566和2.825mg/g.原位载铁炭进一步发育的中孔结构促进了对HA(<10mg DOC/L)的吸附效能,FGL4对HA的Langmuir最大吸附量(QHA)达到46.25mg DOC/g.As-HA共存体系内FGL4对各组分的吸附容量有所降低,但As(Ⅲ)和As(V)的吸附容量仍达到2.325和2.675mg/g.  相似文献   

14.
磁性吸附材料CuFe2O4吸附砷的性能   总被引:7,自引:1,他引:6  
根据Cu(Ⅱ)和Fe(Ⅲ)都对砷有较强的亲和性,制备了同时含有Cu(Ⅱ)和Fe(Ⅲ)的、可用磁分离方法进行分离回收的磁性吸附材料CuFe2O4,并对其进行了表征及吸附砷的性能研究.结果表明,该吸附剂对砷的吸附能力与溶液pH有关,在弱酸性及中性条件下,吸附砷的能力最强,而对As(V)的吸附能力比对As(Ⅲ)更强些,在平衡浓度为10μg/L时,其吸附容量可达10mg/g左右,可以很容易地将水中浓度为1~20mg/L的As(V)降到10μg/L以下.实验考察了几种无机阴离子对吸附砷的影响,表明较高浓度(砷浓度的20倍)的硫酸盐对As(Ⅲ)和As(V)的吸附均有一定影响,盐酸盐及磷酸盐则影响不明显;负载的As(V)可较容易地用0.1mol/L NaOH洗脱下来,使吸附剂再生,而As(Ⅲ)则难以洗脱,这与2种价态砷的吸附机理不同有关.  相似文献   

15.
铝改性粉煤灰漂珠吸附水溶液中砷的性能研究   总被引:2,自引:1,他引:2       下载免费PDF全文
采用湿法与干法相结合的方法合成铝改性粉煤灰漂珠环境材料,借助静态吸附实验研究吸附剂量、pH值、离子强度、共存离子、反应时间和温度对其吸附水溶液中砷性能的影响,并进行吸附等温线和动力学拟合.结果表明:铝改性粉煤灰漂珠吸附水中As(V)的最佳pH值范围为中性偏酸;混合离子和H2PO4-对As(V)的吸附影响较大,CO32-次之;离子强度对As(V)吸附的影响不明显;在温度298K、吸附剂量2.5g/L和反应时间24h的条件下,最大吸附容量约5000μg/g;吸附等温线符合Langmuir单层吸附模型;动力学过程符合准二级动力学模型.  相似文献   

16.
复合吸附材料TLA的制备及其砷氟共除性能的研究   总被引:4,自引:0,他引:4  
以硫酸钛、硝酸镧和活性炭为原料,制备了新型的TLA复合吸附剂.比较了TLA和活性氧化铝除砷除氟吸附等温线、吸附动力学和pH对除砷除氟效果的影响;通过X射线衍射仪(XRD)和扫描电镜(SEM)对吸附剂进行了表征,并对吸附机理进行了探讨.结果表明,TLA对砷氟的吸附容量显著优于活性氧化铝.在pH为7,砷氟单独存在时,TLA对砷和氟的Langmuir吸附容量分别是30.3mg.g-1和27.8mg.g-1;当砷氟共存时,TLA对砷和氟的Langmuir吸附容量分别是25.1mg.g-1和17.0mg.g-1.TLA对砷、氟的吸附符合拟二级动力学方程.溶液pH值显著影响砷、氟去除效果.电荷分布多位络合模型(Charge-distribution multisite complexation model,CDMUSIC)能准确模拟砷、氟的吸附行为.  相似文献   

17.
During the aging process, ferrihydrite was transformed into mineral mixtures composed of different proportions of ferrihydrite, goethite, lepidocrocite and hematite. Such a transformation may affect the fixed ability of arsenic. In this study, the stability of Fe-As composites formed with As(V) and the minerals aged for 0, 1, 4, 10 and 30 days of ferrihydrite were systematically examined, and the effects of molar of ratios Fe/As were also clarified using kinetic methods combined with multiple spectroscopic techniques. The results indicated that As(V) was rapidly adsorbed on minerals during the initial polymerization process, which delayed both the ferrihydrite conversion and the hematite formation. When the Fe/As molar ratio was 1.875 and 5.66, the As(V) adsorbed by ferrihydrite began to release after 6 hr and 12 hr, respectively. The corresponding release amounts of As(V) were 0.55 g/L and 0.07 g/L, and the adsorption rates were 92.43% and 97.50% at 60 days, respectively. However, the As(V) adsorbed by the transformation products aged for 30 days of ferrihydrite began to release after adsorbed 30 days. The corresponding release amounts of As(V) were 0.25 g/L and 0.03 g/L, and the adsorption rates were 84.23% and 92.18% after adsorbed 60 days, for the Fe/As=1.875 and 5.66, respectively. Overall, the combination of As(V) with ferrihydrite and aged products transformed from a thermodynamically metastable phase to a dynamically stable state within a certain duration. Moreover, the aging process of ferrihydrite reduced the sorption ability of arsenate by iron (hydr)oxide but enhanced the stability of the Fe-As composites.  相似文献   

18.
The present work deals with the As(Ⅴ) removal from an aqueous medium by calcined refractory grade bauxite (CRB) as a function of solution pH, time, As(Ⅴ) concentration and temperature. The residual As(Ⅴ) was lowered from 2 mg/L to below 0.01 mg/L in the optimum pH range 4.0-7.0 using a 5 g/L CRB within 3 h contact time. The adsorption data fits well with Langmuir isotherm and yielded Langmuir monolayer capacity of 1.78 mg As(Ⅴ)/g of CRB at pH 7.0. Presence of anions such as silicate and phosphate decreased As(Ⅴ) adsorption efficiency. An increase temperature resulted a decrease in the amount of As(Ⅴ) adsorbed by 6%. The continuous fixed bed column study showed that at the adsorbent bed depth of 30 cm and residence time of 168 min, the CRB was capable of treating 340 bed volumes of As(V) spiked water (C0 = 2 mg/L) before breakthrough (Ce = 0.01 mg/L). This solid adsorbent, although not reusable, can be considered for design of adsorption columns as an efficiency arsenic adsorption media.  相似文献   

19.
Natural and anthropogenic arsenic (As) contamination of water sources pose serious health concerns, especially for small communities in rural areas. This study assessed the applicability of three industrial byproducts (coal fly ash, lignite, and green waste compost) as the low-cost adsorbents for As(V) removal under various field-relevant conditions (dissolved oxygen, As(V)/Fe ratio, solution pH, and presence of competing species). The physico-chemical properties of the adsorbents were characterized by XRD, XRF, FT-IR, and NMR analysis. Batch experiments demonstrated that coal fly ash could provide effective As(V) removal (82.1%-95%) because it contained high content of amorphous iron/aluminium hydroxides for As(V) adsorption and dissolvable calcium minerals for calcium arsenate precipitation. However, the addition of lignite and green waste compost was found unfavourable since they hindered the As(V) removal by 10%-42% possibly due to dissolution of organic matter and ternary arsenate-iron-organic matter complexes. On the other hand, higher concentrations of dissolved iron (comparing As(V)/Fe ratios of 1:1 and 1:10) and dissolved oxygen (comparing 0.2 and 6 mg/L) only marginally enhanced the As(V) removal at pH 6 and 8. Thus, addition of dissolved iron, water aeration, or pH adjustment became unnecessary because coal fly ash was able to provide effective As(V) removal under the natural range of geochemical conditions. Moreover, the presence of low levels of background competing (0.8 or 8 mg/L of humic acid, phosphate, and silicate) imposed little influence on As(V) removal, possibly because the high adsorption capacity of coal fly ash was far from exhaustion. These results suggested that coal fly ash was a potentially promising adsorbent that warranted further investigation.  相似文献   

20.
To remove cesium ions from water and soil, a novel adsorbent was synthesized by following a one-step co-precipitation method and using non-toxic raw materials. By combining ammonium-pillared montmorillonite (MMT) and magnetic nanoparticles (Fe3O4), an MMT/Fe3O4 composite was prepared and characterized. The adsorbent exhibited high selectivity of Cs+ and could be rapidly separated from the mixed solution under an external magnetic field. Above all, the adsorbent had high removal efficiency in cesium-contaminated samples (water and soil) and also showed good recycling performance, indicating that the MMT/Fe3O4 composite could be widely applied to the remediation of cesium-contaminated environments. It was observed that the pH, solid/liquid ratio and initial concentration affected adsorption capacity. In the presence of coexisting ions, the adsorption capacity decreased in the order of Ca2 + > Mg2 + > K+ > Na+, which is consistent with our theoretical prediction. The adsorption behavior of this new adsorbent could be expressed by the pseudo-second-order model and Freundlich isotherm. In addition, the adsorption mechanism of Cs+ was NH4+ ion exchange and surface hydroxyl group coordination, with the former being more predominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号