首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
上海市城区典型居民住宅区PM2.5和PM10监测结果比较研究   总被引:1,自引:0,他引:1  
在上海市环境空气质量连续自动监测网络中的一个城市居民住宅区监测点进行了为期一年的PM2.5和PM10的同步监测,监测结果表明:PM2.5和PM10日平均浓度之间的比值范围为0.194~0.889,月平均浓度之间的比值范围为0.420~0.667;冬季颗粒物中小粒径颗粒物PM2.5的比例较高,春季则较低;随着相对湿度的上升;颗粒物中小粒径颗粒物PM2.5的比例缓慢升高;比值变化的风向特征与监测点周围环境情况有关;PM2.5和PM10监测结果月均值之间和各月的日均值之间均线性相关,回归直线关系存在。  相似文献   

2.
为研究乌鲁木齐市冬季采暖期间大气颗粒物污染特征,通过采样和在线监测二种手段分析了2015年1~2月大气颗粒物样品,采用重量法分析颗粒物质量浓度,并对其相关性进行分析。结果表明:依据《环境空气质量标准》(GB 3095-2012),采样期间乌鲁木齐市大气PM_(10) 和PM_(2.5)的日均质量浓度均超过了国家二级标准,颗粒物污染严重;PM_(10) 和PM_(2.5)存在显著相关性,PM_(2.5)和PM_(10) 浓度的比值均大于0.5,采暖期PM2.5对乌鲁木齐市大气颗粒物贡献显著。  相似文献   

3.
郑州市 PM2.5和 PM10质量浓度变化特征分析   总被引:3,自引:0,他引:3  
根据郑州市2013年PM2.5和PM10颗粒物连续自动监测数据,对郑州市各国控站点的PM2.5和PM10的达标情况、变化趋势等进行探讨分析。结果表明:2013年郑州市PM10和PM2.5的年均质量浓度均超过了新标准规定的年均值二级标准限值。 PM10和PM2.5月均值峰值出现在1月和10月,谷值出现在8月,各月PM2.5的超标天数都大于PM10。PM10和PM2.5冬季的日均值浓度明显高于其他季节,呈双峰型,夜晚浓度整体高于白天;PM2.5春、夏、秋三季日变化呈单峰型,PM10夏季和秋季呈单峰型,春季呈双峰型。 PM2.5和PM10日均值有着非常显著的线性相关关系,PM2.5和PM10浓度的比值(p)10月最高。  相似文献   

4.
对长沙市环境空气中PM10、PM2.5质量浓度进行自动监测,并统计分析其分布的均匀性。结果表明,在1 d的4个典型时刻以及日内,PM2.5的质量浓度分布总体上较PM10均匀;从月内日均值及2013年1月—10月的月均值变化情况看,PM2.5质量浓度的相对标准偏差(RSD)总体高于PM10,表明PM2.5在长时间尺度上的分布较PM10更不均匀;就功能区分布而言,PM10、PM2.5质量浓度分布的均匀性没有明显的区域差异,两者的变化幅度与功能区类别没有必然联系。  相似文献   

5.
我国4个大城市空气PM_(2.5)、PM_(10)污染及其化学组成   总被引:52,自引:3,他引:49  
报告了 1 995~ 1 996年在中国的广州、武汉、兰州、重庆 4大城市 8个采样点 PM2 .5 、PM2 .5~ 1 0 和 PM1 0 的监测结果。结果表明 ,1 995年 PM2 .5 年均值浓度为 57~ 1 60 μg/m3,比美国 1 997年颁布的标准值 (1 5μg/m3)高 2 .8~ 9.7倍。PM1 0 年日均值为 95~ 2 73μg/m3。除武汉市 1个对照点外 ,其余 7个监测点的 PM1 0 均超过我国空气质量二极标准 (1 0 0μg/m3)2 8%~ 1 73 % ,比美国标准 (50μg/m3)超过更多 ,说明污染是相当严重的。用 XRF分析了 PM2 .5 、PM2 .5~ 1 0 中 4 2种化学元素 ,结果表明 ,燃煤、燃油和其它工业污染的元素 As、Pb、Se、Zn、Cu、Cl、Br、S在这些颗粒物中有明显富集 ,特别是在PM2 .5 中的富集倍数达数十倍至数万倍 ,对人体健康有很大危害  相似文献   

6.
冬季大气中PM_(10)和PM_(2.5)污染特征及形貌分析   总被引:6,自引:4,他引:2  
2008年冬季采集大气中PM10和PM2.5样品,利用SPSS软件进行分析。结果表明,PM10质量浓度在92.87~384.7μg/m3之间,平均值为201.09μg/m3,超标率71.43%。PM2.5浓度跨度为57.27~230.21μg/m3,平均值为133.82μg/m3,超标率89.47%。PM10和PM2.5空间分布略有差异。PM2.5/PM10在29.10%~94.76%之间,均值为66.55%。PM2.5与PM10质量浓度之间有显著相关性,相关方程:PM2.5=0.7993×PM10-55.984(R2=0.9524,置信度为95%)。通过颗粒物形貌分析,初步判定冬季大气主要污染源为燃煤和机动车尾气排放。  相似文献   

7.
为了研究北京地区PM2.5与空气污染物的质量浓度关系。从PM2.5监测网收集2013-04-01~2014-05-15期间PM2.5、PM10、SO2、NO2、CO、O3等主要空气污染物数据,用多元线性回归模型建立PM2.5与空气污染物的质量浓度关系。结果表明:北京地区PM2.5与空气污染物PM10、SO2、NO2、CO、O3的质量浓度相关系数分别为0.9172、0.6332、0.7683、0.8166和-0.1797,优化的拟合方程为:[PM2.5]=-22.5925+0.569109×[PM10]+23.94913×[CO]+0.113025×[BPM2.5],模型的估算值与观测值相关系数为0.9426,此方程能较好地模拟北京地区的PM2.5质量浓度。  相似文献   

8.
采集澳门地区不同区域大气PM10样品,根据单颗粒图像分析方法分析了PM10的粒径分布,计算了各采样点PM10粒度分布的分形维数,分析讨论了PM10粒度分布分形维数的变化与粒度分布的关系,分析了粒度分布分形维数表征的澳门大气PM10不同采样点、不同季节的粒度整体分布及其影响因素之间的关系。结果表明,澳门地区PM10粒度分布的分形维数在2.05~3.95之间,夏季PM10的粒度分布分形维数(2.88)大于冬季(2.63),表明夏季PM10的粒度普遍较冬季的细。同一季节不同区域大气PM10的粒度也有较大变化,夏季时,澳门岛的总体颗粒物、矿物颗粒和烟尘颗粒物的分形维数较氹仔岛的偏大,即澳门岛的颗粒物比氹仔岛偏细,而冬季则相反,冬季时,澳门岛的总体颗粒物、矿物颗粒和烟尘颗粒物的分形维数较氹仔岛的偏小。  相似文献   

9.
利用库尔勒市2006—2013年的PM10监测数据以及同期常规气象资料,使用非参数分析(spearman秩相关系数)方法分析了常规气象要素与PM10浓度的相关关系。结果表明PM10浓度与各气象要素关系密切:气压较高时,PM10浓度易超过《环境空气质量标准》(GB 3095-2012)二级标准;当气温≥20℃时,温度越高PM10浓度超标天数越少,当气温20℃时,较高的气温则不利于PM10的稀释扩散;温度露点差越小,PM10的超标率越大;PM10浓度随风速的增大先降低后增加;降水对PM10有清除作用。  相似文献   

10.
根据中国环境保护产品认证标准(CCEP)的技术规范,结合美国环境保护署(EPA)关于环境空气监测参考指标和等效检测方法,对赛默飞世尔最新开发的双通道颗粒物自动监测装置的主要性能指标进行分析表征。用3台待测双通道5028i型和2台参照单通道5014i型颗粒物自动监测装置连续2个月自动监测大气颗粒物PM2.5和PM10,考察双通道颗粒物自动监测装置关于仪器精度、仪器准确度、流量稳定性和准确性等方面的性能。  相似文献   

11.
刘齐 《环境研究与监测》2009,22(4):46-48,55
本文利用2008年柳州市四中点位PM10与同期气象要素的监测资料,分析PM10与相对湿度、温度、气压、风速等气象要素之间的关系:柳州市四中点位的PM10污染总体上较轻,且呈明显的季节变化,按秋季、夏季、冬季、春季依次加重,秋季、夏季较轻,冬季、春季相对较重。  相似文献   

12.
随着环境空气质量新标准的全面实施,PM_(2.5)监测已经全面普及,并成为全国大部分城市关注的首要污染物,根据新疆环境空气质量监测网中不同区域、不同时段颗粒物(PM_(2.5)、PM_(10))质量浓度监测结果,对PM_(2.5)/PM_(10)质量浓度的比值关系进行深入分析,研究其在新疆典型区域特殊气象条件下的分布规律,为科学合理评价和考核新疆环境空气质量提供数据支持与参考。  相似文献   

13.
广州市PM_(10)与气象要素的关系分析   总被引:5,自引:1,他引:4  
广州的PM10污染状况较为严重.PM10是大气颗粒物中对环境和人体健康危害最大的一类,PM10与医院就诊率、呼吸器官疾病发病率乃至死亡率等关系密切.PM10污染与气象条件关系密切,研究气象条件对PM10污染的影响,对改善城市空气质量条件有重要意义.文章利用2001~2004年广州市PM10和同期地面气象要素的监测资料,定量分析PM10与降雨量、相对湿度、平均温度和气压之间的关系:不同等级的降雨对PM10污染均有一定的清除作用;PM.0日平均质量浓度的改变量随着降雨量的增大而增大;1mm降雨量对PM10的清除能力按春、夏、秋、冬依次递增.春、夏、秋三个季节均为当日平均相对湿度低于季平均相对湿度时容易出现PM10污染天气,冬季则相反.春、秋两季均为当日平均气温在季平均值附近徘徊时,较易出现PM10污染,冬季则相反,夏季较少出现PM10污染.较高气压下PM10污染日的出现频率明显高于非污染日.  相似文献   

14.
2013年苏州春季一次重污染天气的过程分析   总被引:1,自引:0,他引:1  
研究了2013年3月在江苏范围内的一次重污染天气过程,重点分析苏州在此次污染过程中大气污染的变化特征。污染过程中,苏州市颗粒物浓度上升较为明显, PM10的小时质量浓度最高达548μg/m3, PM2.5质量浓度也达到197μg/m3,污染持续时间为2 d,3月8—9日当地空气质量均达到中度污染水平。根据后向轨迹模型、颗粒物离子浓度的分析,此次污染是由外来浮尘及苏州本地污染物排放所造成的区域霾污染影响所致。根据监测结果与实际污染特征,针对性地提出了对策和措施。  相似文献   

15.
2008年春季呼和浩特沙尘天气与TSP和PM_(10)污染的关系   总被引:3,自引:0,他引:3  
利用TSP和PM10逐时监测数据,对2008年春季呼和浩特市TSP和PM10浓度的变化及其在沙尘天气过程中的相关性进行了分析,结果表明:(1)2008年春季TSP和PM10浓度值多高于国家环境空气质量二级标准,沙尘天气是影响空气环境质量的主要诱因。(2)TSP和PM10浓度在沙尘暴发生当日及前后几天均会有不同程度的增加,且以沙尘天气发生当日浓度最大。TSP和PM10浓度3月份最低,4月份次之,5月份最高。(3)不同沙尘天气过程中,TSP和PM10浓度相差明显,且TSP与PM10/TSP值随沙尘天气强度的增加而增大,PM10在不同沙尘天气过程中均为主要组成成分。(4)沙尘天气过程中TSP与PM10呈线性相关。  相似文献   

16.
灰霾天气不同粒径的颗粒物污染特征分析   总被引:2,自引:0,他引:2  
利用宁波市北仑区PM10、PM2.5和PM1的监测数据及与之对应的能见度监测结果,对影响灰霾天的颗粒物的污染特征进行了系统研究,结果表明,颗粒物粒径对灰霾天的形成和能见度的影响程度差异明显,且3种粒径的颗粒物质量浓度与能见度之间线性关系密切。  相似文献   

17.
选用敦煌、酒泉、河西走廊气象站2005年可吸人颗粒物PM10逐时浓度监测资料,较为系统地统计分析了河西走廊地区主要空气污染物-PM10的时空分布特征,其中包括PM10平均浓度和各等级出现频率的逐月变化.揭示了河西走廊站PM10污染年变化趋势,并分析了PM如浓度与地面常规气象要素的相关性。  相似文献   

18.
TSP-PM10-PM2.5-2型中流量大气颗粒物采集系统的开发和应用   总被引:13,自引:0,他引:13  
自行开发并研制了TSP-PM10-PM2.5-2型中流量TSP、PM10、PM2.5大气颗粒物采集系统,是目前中国唯一可以采集TSP、PM10、PM2.5样品并提供足够的样品量进行大气颗粒物化学成分分析的中流量大气颗粒物采集器.该系统精心设计和加工的限流孔可以保持完全固定的流量,保证切割粒径的稳定,减小采样的误差并方便操作.该系统已经成功地应用于20多个城市和地区大气颗粒物的监测和研究中,为研究大气颗粒物的污染状况和来源提供了有效的技术手段和支持.  相似文献   

19.
2008年北京市PM_(10)的粒度分布分形维数变化特征   总被引:3,自引:2,他引:1  
2007年11月-2008年10月间在北京市市中心和西北城区采集了不同季节的PM10样品,并借助扫描电子显微镜和图像分析软件对其进行粒度分布分形维数分析。结果表明,颗粒物中细颗粒物越多,粒度越细,则颗粒物粒度分布分形维数值越大。2008年西北城区的PM10的粒径分布分形维数较大,市中心的较小。市中心的粒度分布分形维数在1.95~2.59之间,各个季节的分形维数呈现冬季春季夏季秋季,西北城区的粒度分布分形维数在2.58~2.72,各个季节的分形维数呈现秋季夏季冬季春季,说明在市中区冬季PM10粒度较细,而在西北城区秋季的颗粒物偏细。与2005年同季相比,2008年的总体颗粒物和烟尘集合体的粒径分布分形维数较大,矿物颗粒的粒度分布分形维数较小,并且总分布的季节变化一致。2008奥运期间的PM10粒度分布分形维数在2.28~3.39之间变化,标志着颗粒物总体变细的趋势。  相似文献   

20.
空气中PM_(10)浓度的BP神经网络预报研究   总被引:1,自引:0,他引:1  
BP神经网络在空气污染预报领域的应用越来越广泛,本文建立了某市PM10浓度预报的分段BP神经网络模型。经验证所建立BP预报模型预测精度比较高,PM10日平均浓度误差大多数在-0.010~0.010mg/m3范围内,相对误差在-20%~20%范围内,表明BP神经网络对PM10的浓度预报是一种有效的工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号