首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究焦作市大气污染特征及其相关性,对2015—2017年焦作市4个国控空气监测点位的监测数据进行统计分析。结果表明:2015—2017年城区环境空气污染SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度均呈逐年下降趋势;大气污染浓度季节变化特征明显,PM_(10)、PM_(2.5)、SO_2、NO_2、CO的浓度均为冬季最高、夏季最低,空气质量指数也在冬季达到最高值; O_3浓度则为夏季最高、冬季最低。2017年焦作市沙尘天气共计36 d,严重影响了环境空气中颗粒物的浓度。由PM_(2.5)与PM_(10)的比值说明大气颗粒物污染以PM_(2.5)为主。通过SPSS软件分析,SO_2、NO_2、CO、PM_(10)、PM_(2.5)浓度间呈两两正相关,O_3浓度与NO_2、CO呈负相关。  相似文献   

2.
利用2013—2018年北京市大气污染物监测数据及气象条件等资料,分析了北京市PM_(2.5)污染波动变化趋势及其影响因素。结果表明,2013—2018年北京市空气质量呈现整体改善趋势,优良天数由2013年的176 d增加至2018年的227d;重污染天数显著减少,由2013年的58 d逐年递减至2018年的14 d。受污染源排放、特殊气候现象、气象条件等多因素影响,近6年北京市ρ(PM_(2.5))月均值呈现波动下降趋势,其中秋、冬季波动性更加突显。2014—2016年北京市秋冬季PM_(2.5)污染突出,其中2014年10月、2015年11—12月、2016年12月ρ(PM_(2.5))月均值均达到中度污染级别;而2017—2018年北京市秋、冬季ρ(PM_(2.5))月均值均处于优良水平。相关性分析结果显示,地面相对湿度、中层温度与大气污染物呈现较强的正相关性,中层北风频率、地面风速则呈现负相关性。基于上述气象条件及CO、SO_2和NO_2等气态污染物共同构建的拟合方程对ρ(PM_(2.5))估算结果较好,多站点的拟合值与实际值的相关系数为0.900~0.947,进一步说明气象条件及相关污染源排放对PM_(2.5)污染具有显著影响。  相似文献   

3.
为了解广州地区灰霾天气成因,基于城市超级站,对2013年12月1日—12月8日期间2次灰霾天气过程的水溶性无机离子污染特征进行研究。结果表明:监测期间二次离子(SNA)SO_4~(2-)、NO_3~-、NH_4~+分别占PM_(2.5)质量浓度的15.8%、7.4%、7.0%;2次污染过程SNA对PM_(2.5)贡献显著,机动车排放和燃煤是PM_(2.5)的主要污染来源。广州冬季属于富氨区,2次污染过程都伴随着NH_4~+显著增加,NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3形式存在。  相似文献   

4.
采用2015—2017年秋、冬季江苏省环境空气质量监测数据,从空气质量优良(达标)率、首要污染物、主要污染物浓度分析空气质量现状及特点。结果表明,江苏省秋、冬季空气质量优良(达标)率在60%左右,其中沿海地区空气质量达标率最高(71.1%),西北地区达标率最差(52.2%)。污染日的首要污染物主要为PM 2.5,占比高达91.5%。ρ(PM2.5)/ρ(PM 10)存在地区差异,江苏西北地区扬尘源贡献较大,江苏南部地区的二次颗粒物贡献更明显。ρ(NO2)/ρ(SO2)逐年持续升高,表明大气污染类型从燃煤性污染转变为复合型污染。  相似文献   

5.
利用2016年南京市臭氧(O_3)及前体物监测数据,对南京市O_3污染现状、变化特征及其与前体物的关系进行分析。结果表明,2016年南京市O_3超标56 d,超标率15.3%,O_3日最大8 h滑动平均值的第90百分位数为184μg/m~3,超标0.15倍。O_3超标主要集中在4—9月份,日变化呈现"单峰"型特征,峰值出现在14:00,而上午8:00—10:00时段O_3浓度升幅最显著,小时浓度升幅超过20%。前体物VOCs和NO_2浓度变化与O_3呈反相关,且VOCs和NO_2浓度冬季最高,夏季最低,秋季和春季基本相当。  相似文献   

6.
成都市夏季近地面臭氧污染气象特征   总被引:9,自引:3,他引:6  
利用2016年7月成都市8个环境监测站点的臭氧、NO_2的监测资料以及成都市国家基准气象站和基本气象站的观测资料,对成都市夏季臭氧、NO_2浓度和气象要素的日变化特征和臭氧污染过程进行了分析。研究结果表明:成都市臭氧污染受综合气象条件和NO_2浓度的影响,高温、低湿、强辐射有利于臭氧大量生成,NO_2浓度高低决定了臭氧浓度的峰值大小;在污染期间,大气边界层高度远高于本地平均水平,数值约为平均水平的2~3倍;成都市臭氧污染的主要影响因子存在地区差异,成都市区的臭氧主要来自于自身的光化学反应,而灵岩寺地区的臭氧来自于VOCs和大气水平输送。  相似文献   

7.
基于郑州市2005—2015年的OMI遥感反演资料以及地面相关监测数据,研究了郑州市对流层NO_2的时空分布特征,并利用灰色关联法对郑州市NO_2柱浓度变化的主要影响因素进行分析。与地面观测数据对比检验显示,对流层NO_2柱浓度年均值数据与近地面监测站NO_2浓度的实测年均值数据呈显著的正相关,相关系数分别为0.884 6和0.940 2,表明OMI数据资料可以较好地反映地面NO_2浓度的变化。郑州市的对流层NO_2柱浓度在2005—2013年间呈现波动变化且2013—2015年NO_2柱浓度显著减小的特征。季节变化上NO_2柱浓度主要表现为冬季秋季春季夏季的特点。郑州市对流层NO_2柱浓度的空间变化分布主要表现为由北部向南部逐渐递减的趋势,年际变化上高值区与低值区变化不够显著,中值区近年来不断扩大。灰色关联度分析结果显示,汽车保有量与对流层NO_2柱浓度的灰色关联度最低为0.571,而标准煤消耗量、工业用电量以及采暖供热量与对流层NO_2柱浓度的灰色关联度比较高,分别为0.956、0.828、0.862,即大气中工业过程及采暖期煤炭燃烧排放的NO_2占较大比例,汽车尾气排放所占的比例相对较小。  相似文献   

8.
中国北方地区采暖期颗粒物污染现状   总被引:2,自引:2,他引:0  
分析了2013—2016年冬季采暖期与非采暖期中国北方地区颗粒物污染现状及时空变化特征。结果表明:中国北方地区空气污染比较严重,采暖期尤为突出。2016年,中国北方地区重度及以上污染天数比例超过10%,采暖期优良天数比例较非采暖期下降22.8%,重度及以上污染天数比例升高10.1个百分点。颗粒物浓度呈现明显的冬季高、夏季低的特点,最高值一般出现在12月至次年1月,最低值一般出现在7—9月。2013—2016年,北方地区空气质量呈较为明显的改善趋势,PM_(10)和PM_(2.5)浓度总体呈下降趋势,但2014年以来采暖期同期比较显示,PM2.5浓度呈缓慢升高趋势,采暖期空气污染形势十分严峻。颗粒物浓度呈现明显的空间分布规律,采暖期石家庄、保定、衡水、邢台、邯郸、安阳等城市为京津冀区域污染最严重的城市。  相似文献   

9.
对2015—2016年盐城市城区4个空气质量自动监测国控站点的O_3监测数据进行分析,探讨盐城市O_3污染水平、时空分布特征及其与前体物、气象因子之间的关系。结果表明,各站点O_3污染水平较为接近,2016年各站点O_3-8h第90百分位数超标天数较2015年分别下降了43.5%,50.0%,8.7%和43.6%;全年O_3逐月值大致呈双峰分布,高ρ(O_3)主要集中在4—10月;O_3日变化曲线呈明显的单峰分布,一般在05:00—07:00最低,13:00—15:00达到峰值;不同季节的O_3日变化情况有所差异,午后O_3峰值与O_3日变化幅度均在春季最大,冬季最低;NO、NO_2和CO的日变化曲线均呈现出早晚双峰分布,受早高峰影响,一般在07:00左右达到一日中的最大值;O_3与NO_x等前体物均显著负相关,高ρ(O_3)往往出现在高ρ(CO)/ρ(NO_2)时;总体上各站点的ρ(O_3)随风速的增大而增大。  相似文献   

10.
为研究北京地区冬季PM_(2.5)载带的水溶性无机离子组分污染特征,2013年1月在中国环境科学研究院内采用在线离子色谱(URG-9000B,AIM-IC)对PM_(2.5)中水溶性无机离子(SO_4~(2-)、NO_3~-、Cl~-、NH_4~+、Na~+、K~+、Mg~(2+)、Ca~(2+))进行监测与分析。结果表明,采样期间总水溶性无机离子(TWSI)浓度为61.0μg/m~3,其中二次无机离子SO_4~(2-)、NO_3~-、NH_4~+(SNA)占比达72.3%,在PM_(2.5)中占比为40.29%,表明北京市PM_(2.5)二次污染严重。重污染天[NO_3~-]/[SO_4~(2-)]表明,固定源污染较移动源更为显著。三元相图表明,在空气质量为优的情况下,NH_4~+(在SNA中占比为30.3%~65.5%,下同)主要以NH_4NO_3的形式存在,较少比例以(NH_4)_2SO_4存在;严重污染时,NH_4~+(47.3%~77.9%)主要以(NH_4)_2SO_4形式存在,其次以NH_4NO_3的形式存在,其余的NH_4~+以NH_4Cl的形式存在。[NO_3~-]/[SO_4~(2-)]日变化表明,早、晚机动车高峰影响北京重污染发生。  相似文献   

11.
在2013年4月11日—5月22日期间测定厦门市过氧乙酰硝酸酯,研究该地区光化学污染过程,并统计移动源、植物、工业VOCs的排放量。结果表明,光化学污染不仅产生PM2.5,引起市区NO2浓度升高,还会加重霾的产生和污染水平,提出通过优化树种以降低光化学污染。  相似文献   

12.
为探讨2013—2019年京津冀及周边地区"2+26"城市PM_(2.5)重污染时空演变特征,对"2+26"城市7年间的大气环境监测网数据进行了统计分析。在年际变化上,重污染过程次数逐年下降,发生时长和强度分3个阶段大幅降低。相比2013年,2014—2016年重污染小时数、天数和峰值浓度均降低了一半左右,2017—2019年则下降了约80%。目前,区域重污染过程以持续1~2 d的较短过程为主。在季节分布上,全年重污染集中于秋冬季,其中冬季占比从60%升至80%,尤其是1月的重污染占比最高且有逐年增加趋势。在空间分布上,区域差异明显缩小,呈相对均匀化趋势,区域污染中心有所南移,南部的冀南豫北区域在区域重污染中的占比呈上升趋势。在污染成因基本类型上,污染排放导致的积累型为主要类型,占比约90%;沙尘型及烟花爆竹燃放型的总占比约为10%,虽然其占比较低,但近年的比重较稳定,未有明显下降趋势。  相似文献   

13.
大连市臭氧污染特征及典型污染日成因   总被引:1,自引:1,他引:0  
通过对大连市区10个空气监测子站的监测数据进行分析,探讨了大连市臭氧污染的时空分布、气象条件对臭氧污染的影响,对臭氧污染日进行了归类分析。结果表明,大连市臭氧污染主要出现在4—10月。在强紫外辐射、高温、低湿、低压和低风速的气象条件下,监测点位的臭氧浓度较高。臭氧污染日的日变化分为单峰型、双峰型和夜间持续升高型3种类型。通过对2015年的一次高浓度臭氧污染过程的气象条件、污染物浓度和污染气团轨迹进行分析,发现臭氧浓度在夜间持续升高现象与区域输送密切相关。  相似文献   

14.
上海市臭氧污染时空分布及影响因素   总被引:1,自引:0,他引:1  
分析2006—2016年上海市的监测数据发现,臭氧(O_3)浓度存在逐年上升趋势,污染持续时间有所增加,但除水平风速有下降趋势外,其他相关气象因素的年际变化趋势并不显著。空间分析结果表明,上海市O_3超标主要集中在西南部郊区,但市区O_3超标潜势不容忽视。O_3污染高发季节的污染玫瑰图分析发现,上海市南部地区是影响上海市O_3污染的关键区域;对于NO_2减排的影响分析发现,尽管上海市O_3平均浓度总体处于上升趋势,但在NO_2下降幅度最为明显的内环市区和北部郊区,O_3上升幅度低于NO_2下降幅度较小的内外环区域和西部郊区,表明上海市的O_3污染控制仍需持续推进NOx的减排,并同步推进VOCs的减排。  相似文献   

15.
使用天津市2013—2019年连续污染物监测数据和气象观测数据探讨臭氧污染现状,分析气象条件对臭氧浓度的影响,对不同臭氧污染过程案例进行天气分型,统计出现臭氧污染时的污染气象特征。结果表明:天津市臭氧浓度不降反升,2017—2019年连续3年超过国家二级浓度限值,2019年以臭氧为首要污染物的重污染天约占全年的1/2。春季和秋季臭氧污染日益突出,4月臭氧浓度已明显升高。天津市臭氧日最大8 h滑动平均质量浓度(O3-8 h)在日最高气温超过30℃、相对湿度20%~70%、西南风或东南风风速1~2.5 m/s、白天边界层高度1 400 m以下时较高。将臭氧污染天气形势分为春夏之交、盛夏高温和夏秋静稳3种类型。其中春夏之交天气型易出现臭氧与PM2.5协同污染;盛夏高温天气型平均风速较大,日最高气温大于35℃;夏秋静稳天气型平均风速小、边界层低。  相似文献   

16.
通过将上海虹桥机场2016年大气污染物监测数据与该市国控站点数据对比分析,结果表明:机场附近首要污染物为NO_2和PM_(2.5),随着污染级别加重,PM_(2.5)成为首要污染物的频次增加。虹桥机场NO_2浓度均值在各季节均高于各国控站点,日变化呈"双峰双谷"特征,峰值出现时间较其他站点早1 h。冬季PM_(2.5)浓度高于国控站点,其他三季相当。冬季PM_(2.5)日变化具有明显的"双峰"特征,上午峰值出现时间较其他站点早一两小时,夏季不明显。O_3日变化表现为上午其生成速率和NO_2的消耗速率都要高于其他站点。  相似文献   

17.
基于地面观测数据,分析了"十一五"和"十二五"期间宁波市酸雨污染特征变化趋势。结果表明,2015年降水pH从2010年的4.37上升到4.89;2010—2015年酸雨发生频率降低了17.4百分点;重酸雨区范围不断缩小,轻酸雨区范围不断扩大,酸雨污染程度有所改善。降水中化学组成变化显示,与"十一五"末相比,2015年除NO_3~-、Cl~-外其他离子浓度均有所下降;2015年SO_3~(2-)与NO_3~-的当量浓度之比从2010年的3.10下降到1.73,表明酸雨污染从硫酸型向硫酸与硝酸混合型转变。  相似文献   

18.
利用2000—2019年TERRA和AQUA相结合的气溶胶光学厚度(AOD)产品数据,从时间和空间角度分析了常州市AOD的变化特征。结果显示:(1)2012—2019年常州市PM2.5与AOD年均值的相关系数为0.898,表明AOD产品适用于常州市气溶胶污染年际变化研究。(2)2000—2019年常州市AOD年均值范围为0.463~0.688,平均值为0.627。其中,2000—2007年常州市AOD年均值整体呈上升趋势,2011—2019年呈下降趋势。常州市AOD的月变化趋势呈倒“U”形,特征最高值出现在6月,最低值出现在12月。常州市AOD有明显的季节变化特征,夏季最高,冬季最低。(3)常州市AOD高值主要分布在西部的溧阳市金坛区,北部的新北区也存在少量高值分布。(4)通过Moran指数发现,常州市Moran指数均大于零,表明各年份AOD均呈集聚状态。2000—2010年常州市AOD的空间集聚程度较高,2010年以后的空间集聚效应逐渐减弱。空间热点分析表明,2011—2019年常州市AOD高值集聚区域相比2000—2010年有所减少,冷点集聚区域有所增加,AO...  相似文献   

19.
于2019年10月—2020年2月在盐城市开展大气PM_(2.5)离线监测,对PM_(2.5)的浓度变化、质量平衡、组分及来源进行了分析。结果表明,监测期间盐城市ρ(PM_(2.5))月均值为43.32~62.59μg/m~3,其中1月最高;监测期间ρ(PM_(2.5))平均值为54.25μg/m~3,质量重建后该值为52.38μg/m~3,与实测值的相关性达到0.98; PM_(2.5)占比最多的成分是硫酸盐、硝酸盐和铵盐(SNA); m(NO_3~-)/m(SO_4~(2-))的平均值为2.16,说明监测期间盐城市机动车相比固定源对NO_2和SO_2有更高的贡献;通过主成分因子分析,可知盐城市秋、冬季节PM_(2.5)主要来源于土壤和扬尘源、燃烧源以及二次无机源。  相似文献   

20.
研究分析了2013—2017年北京市交通环境点位大气污染物浓度分布特征,结果发现:交通监测点NO、NO_2与PM_(2.5)浓度时间变化特征与城区总体状况基本一致,与交通环境密切相关的NO_2浓度采暖季高于非采暖季,重污染日期间交通监测点峰值浓度也明显偏高;周末交通监测点NO浓度在5:00—23:00低于工作日4.9%~32.1%,周末NO_2浓度在7:00—23:00低于工作日0.7%~7.4%,NO_x浓度周末偏低与车流量降低密切相关;重大活动期间空气质量减排措施实施后,北京市作为区域NO_2浓度高值区中心明显消失,PM_(2.5)浓度分布梯度减小,本地减排效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号