首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了研究重庆市北碚城区大气碳质气溶胶组分的污染特征,于2014年3月~2015年2月采用安德森采样器采集大气颗粒物样品,用DRI Model 2001 A热光碳分析仪测定其中有机碳(OC)和元素碳(EC)的质量浓度.结果表明,北碚城区PM_(2.1)和PM_(9.0)中OC和EC的年平均浓度分别为(16.3±7.6)、(1.8±0.7)和(25.0±9.7)、(3.2±1.3)μg·m-3.在PM_(2.1)中,OC和EC均呈现出冬春季大于夏秋季的季节变化特征,而PM_(9.0)中OC呈现出夏春季大于冬秋季,EC呈现出冬春季大于夏秋季的季节变化特征.对全年OC和EC的粒径进行分析,发现OC在整个粒径上呈现"双峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段;EC呈现出"三峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段,同时2.1~3.3μm粒径段也出现一个明显峰值.对OC和EC进行相关性分析并对PM_(2.1)中的SOC进行估算,发现北碚城区全年SOC浓度为(6.3±5.9)μg·m-3,占全年OC的33.5%±22.6%,且OC和EC显著相关.最后对北碚城区大气气溶胶的污染来源进行分析,发现污染主要来源于汽油车尾气、生物质燃烧和燃煤排放.  相似文献   

2.
针对天津市大气颗粒物PM10中碳组分的垂直分布特征开展研究,结果显示天津市含碳组分垂直分布特征明显,OC和EC浓度随高度升高而减少.各高度中,近地面10 m处大气OC和EC浓度最高,碳颗粒污染最重,近地面SOC污染亦较重,与机动车尾气排放有较大关系;40 m高度处OC和EC的相关系数最小,该高度处碳颗粒来源较复杂,近地面机动车和高架源燃煤排放等源均对碳颗粒有贡献;120 m处OC和EC的相关性最高,碳组分同源性较高,与该高度处碳颗粒主要受高架源排放影响有关;220 m处OC与EC相关性较低,OC含量最高,OC/EC比值较高,可能与220 m处区域输送燃烧的碳颗粒较多有关.  相似文献   

3.
为探讨厦门市冬季大气PM_(2.5)含碳组成特征,于2014-12-10至2015-01-09同步采集了城区和郊区的PM_(2.5)样品。采用热光透射法分析了PM_(2.5)中OC、EC的质量浓度。结果表明,近年来厦门市PM_(2.5)、OC、EC的浓度表现出逐年降低的趋势。城区和郊区的OC平均浓度分别为9.77±1.87和9.17±2.42μg/m~3,EC平均浓度分别为1.87±0.73和2.43±1.10μg/m~3,与国内外其他城市相比,厦门市冬季大气PM_(2.5)中的OC、EC浓度均处于较低水平,人为引起的大气含碳成分污染相对较轻。城区和郊区的OC/EC值均大于2,SOC占OC比例分别高达34.96%、39.03%,厦门大气PM_(2.5)中的OC受到二次污染较严重。PM_(2.5)、OC、EC的分布规律表明,OC、EC受到了除天气条件以外的其他因素如OC和EC污染源种类、源强以及二次转化程度的影响。城区(R2=0.107 9)和郊区(R2=0.341 9)的OC与EC相关性不明显,初步判断厦门市冬季PM_(2.5)中OC和EC的来源较复杂,EC可能主要来自化石燃料和生物质不完全燃烧等一次排放源,OC则主要受到化石燃料燃烧和二次污染的影响,城区污染源还包括烹饪源以及生物质燃烧。  相似文献   

4.
云南迪庆地区大气本底碳气溶胶的理化特征   总被引:4,自引:1,他引:3       下载免费PDF全文
对2004年8月8日~2005年2月28日云南朱张区域大气本底观测站大气PM10中有机碳(OC)和元素碳(EC)浓度进行观测.结果表明,OC、EC平均浓度分别为3.13±0.91,0.34±0.18μg/m3,OC/EC比值平均为11.92.OC约占总碳(TC)的90.5%,而EC贡献较少.挥发性有机碳(VOC)表现出明显的季节变化,OC、EC浓度变化趋势基本一致,但季节变化不太明显.OC、EC浓度与世界其它背景站点较接近,表明本站能获得区域大气气溶胶的本底特征.  相似文献   

5.
宁波市PM2.5中碳组分的时空分布特征和二次有机碳估算   总被引:2,自引:0,他引:2  
为了研究PM2.5中碳质组分的时空分布特征,于2012年12月至2013年10月4个季度典型时段在宁波市5个采样点采集环境大气中的PM2.5,分析了样品中有机碳(OC)和元素碳(EC)的质量浓度,并估算二次有机碳(SOC)对OC的贡献.结果表明:1宁波市PM2.5年均质量浓度为51.6μg·m-3,其中OC和EC的比例分别为17%和6%.反向轨迹模型的分析结果表明,来自内陆地区的区域传输可能是冬季和春季PM2.5浓度较高的主要原因.2OC/EC比值和OC与EC的相关性分析结果表明,夏季有大量SOC生成,而冬季则可能受华北地区燃煤供暖的显著影响.3用EC示踪法对宁波市的SOC进行了估算,结果表明宁波冬季和春季受到区域传输的显著影响,污染源较不稳定,不宜使用该估算方法.夏季和秋季的SOC质量浓度分别为2.5μg·m-3和2.3μg·m-3,占OC的42%和28%.  相似文献   

6.
2013年10月至2014年7月,在太原市区,分4个月采集大气细颗粒物,共采集120个PM_(2.5)样品,分析了颗粒物及其有机碳(OC)和元素碳(EC)浓度。结果表明,采样期间大气中PM_(2.5)的日均浓度为(300±132)μg/m3,PM_(2.5)超国家二级标准较严重,大致呈现春季冬季秋季夏季的季节变化特征。大气PM_(2.5)样品中OC和EC的含量变化范围分别为3.6~137和0.8~19.3 g/m3,季节变化与颗粒物浓度不一致,呈现为冬季秋季春季夏季的季节变化特征。利用核磁共振仪分析了典型样品中碳质组分的结构组成。结果显示,烷基碳、烷基取代芳香烃碳和氧取代的芳烃或者酚醛树脂类碳是气溶胶中有机质的主要组成成分;秋冬季样品中,羧基碳和氧取代碳相对含量较高,主要来源于生物质燃烧;春季羟基类化合物增加显著,主要来源于地表土壤中的糖类;夏季样品中,来源于生物排放的烃类化合物和机动车排放的芳香烃相对含量较高。  相似文献   

7.
为了探究成都平原碳质气溶胶污染特征及来源,于德阳、成都和眉山三地采集了1 a的PM_(2.5)样品,利用光热透射法测量其有机碳(OC)和元素碳(EC). 3个点年均碳质气溶胶的质量浓度(μg·m~(-3))分别为眉山(OC:15. 8±9. 6,EC:6. 6±5. 3)成都(OC:13. 0±7. 5,EC:4. 7±3. 6)德阳(OC:9. 6±6. 1,EC:3. 4±2. 6),对应的总碳质气溶胶(TCA)在PM_(2.5)中的占比分别为36%、34%和30%.由EC示踪法估算获得二次有机碳(SOC)在OC中的占比分别为眉山38%、成都46%和德阳47%. OC和EC质量浓度季节变化显著,呈现出秋冬季高夏季低的特征,在2013年10月12~13日、12月2~7日和2014年1月中下旬出现峰值,同期气溶胶中K+质量浓度激增,说明这些污染过程中生物质燃烧有重要贡献. PMF模型对碳质气溶胶来源解析结果表明,该地区总碳(TC)的主要来源为生物质燃烧源(46%~56%)、二次有机气溶胶源(26%~38%)、机动车排放源(9%~12%)、扬尘源(3%~4%)、燃煤源(2%~3%)和工业源(1%~2%),生物质燃烧源全年范围内对TC有显著贡献,尤以秋冬两季贡献最高.  相似文献   

8.
兰州春夏季PM10碳组分昼夜变化特征与来源分析   总被引:3,自引:2,他引:1  
马丽  余晔  王博  赵素平  李刚 《环境科学》2017,38(4):1289-1297
为探讨兰州市春夏季大气可吸入颗粒物(PM_(10))中碳气溶胶的昼夜变化特征及来源,从2015年4月1日至8月30日分白天(08:00~20:00)和夜间(20:00~次日08:00)对兰州市区PM_(10)样品进行采集,并分析了其中的有机碳(OC)和元素碳(EC)的昼夜浓度.结果表明,采样期间白天PM_(10)、OC和EC的平均浓度分别为(136.0±84.3)、(12.4±3.2)和(2.3±0.7)μg·m-3.夜间,PM_(10)和OC、EC的平均浓度分别为(196.0±109.2)、(16.0±5.3)和(5.0±2.1)μg·m-3.PM_(10)、OC和EC浓度均呈现出夜间高于白天.采样期间白天二次有机碳占有机碳的比值均高于夜间,表明白天受二次有机碳的污染更严重.沙尘日PM_(10)和OC浓度均高于非沙尘日,而EC浓度与非沙尘日接近.沙尘日,二次有机碳和总碳气溶胶的浓度均较高,但对PM_(10)的贡献相对较低.对碳气溶胶8种组分进行主成分分析,结果表明在非沙尘日,白天碳气溶胶主要来源于燃煤、汽油车、柴油车排放和生物质燃烧,夜间主要受到燃煤、扬尘以及柴油车和生物质燃烧的影响.  相似文献   

9.
长三角典型站点冬季大气PM2.5中OC、EC污染特征   总被引:1,自引:0,他引:1  
康晖  朱彬  王红磊  施双双 《环境科学》2018,39(3):961-971
对2015年1月9日~2015年1月31日临安、南京和苏州3个站点采集的PM_(2.5)样品(共计279组),使用热光反射法(thermal/optical reflectance,TOR)分析了样品中有机碳(OC)与元素碳(EC)的含量,并研究了长三角地区冬季PM_(2.5)中OC和EC的污染特征.结果表明,采样期间临安、南京和苏州的PM_(2.5)平均质量浓度分别为(123.56±61.11)、(144.77±62.91)和(156.5±68.97)μg·m-3,均超过我国《环境空气质量标准》(GB 3095-2012)规定的PM_(2.5)日均值75μg·m-3;其中3个站点OC与EC的平均质量浓度依次分别为(21.93±11.69)/(6±3.6)、(20.32±10.3)/(5.39±3.07)和(27.08±14.35)/(6.4±4.29)μg·m-3.临安作为长三角大气环境背景点,OC与EC的污染也较为严重.3个站点OC与EC的相关性为临安(R2=0.83)、南京(R2=0.72)和苏州(R2=0.72),表明冬季长三角地区的碳质气溶胶的来源较为一致和稳定.3个站点样品中的OC/EC值均大于2.0,样品的OC/EC值主要分布在2.5~6.0这个区间内,表明燃煤源和机动车尾气排放源是OC与EC的主要来源.使用EC示踪法估算临安、南京和苏州3个站点的二次有机碳(SOC)平均质量浓度分别为(9.23±5.26)、(6.82±4.36)和(12.56±7.52)μg·m-3,在OC中占比为42%、34%和46%,表明SOC是OC的重要组成部分.后向轨迹显示,PM_(2.5)、OC和EC的质量浓度与主要气团的传输路径有较好的相关性,自空气质量较差区域气团的PM_(2.5)、OC和EC的质量浓度是来自空气质量较好区域的1.14~1.7倍、1.55~2.1倍和1.94~2.47倍.  相似文献   

10.
为研究南京北郊不同季节PM_(2.5)中碳质组分的主要来源,分别在2014年1月1—23日和2014年7月3—22日进行PM_(2.5)样品采集,并分析其中有机碳(OC)、元素碳(EC)浓度及总碳同位素组成.结果表明,冬季PM_(2.5)浓度高于夏季,平均值为(146.69±64.67)μg·m-3,OC、EC浓度较高,分别为(14.77±5.58)μg·m-3与(9.01±4.74)μg·m-3;而夏季PM_(2.5)浓度为(57.69±23.80)μg·m-3,OC、EC浓度分别为(5.94±2.20)μg·m-3和(2.78±1.25)μg·m-3.二次有机碳(SOC)占OC比重较小,冬、夏两季分别为36.99%与27.37%,这与采样点紧邻公路主干道使颗粒物未得到充分的二次反应有关.南京北郊冬季δ13C平均值为-25.38‰±0.36‰,夏季为-26.50‰±0.58‰,通过与潜在污染源的δ13C值对比,推断出采样期间冬季主要的潜在碳质污染源为煤炭燃烧及机动车尾气,夏季主要的潜在碳质污染源为生物质燃烧及汽车尾气.  相似文献   

11.
杭州市冬季环境空气PM2.5中碳组分污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%.   相似文献   

12.
为研究西安市城市降尘和土壤尘PM10和PM2.5中碳组分污染特征,丰富大气降尘的成分谱库,于2015年4~5月收集了西安市城区5个点位的城市降尘和周边16个点位的土壤尘样品,通过ZDA-CY01颗粒物再悬浮采样器获得PM10和PM2.5的滤膜样品,使用Model5L-NDIR型OC和EC分析仪测定了样品中的有机碳(OC)和元素碳(EC),定量分析了西安市城市降尘和土壤尘PM10和PM2.5中碳组分特征及其主要来源.结果表明,不同站点降尘PM10和PM2.5中OC的占比差异较大,分别为6.0%~19.4%和7.6%~29.8%.不同站点降尘PM10和PM2.5中EC的占比较小,在城市站点的占比分别为0.6%~2.2%和0.2%~3.6%,而在多数外围土壤尘中几乎检测不到EC的存在.PM10中含碳组分的占比为:城市降尘>外部对照>河滩土>土壤尘,PM2.5中含碳组分的占比为:城市降尘>土壤尘>外部对照>河滩土.不同站点降尘含碳气溶胶均以OC为主,在城市降尘中相对较低,在PM10和PM2.5中OC占总碳(TC)的比值分别为85.2%~95.3%和87.9%~98.9%;在土壤尘中OC的占比较高,均超过99%.含碳物质主要集中在细颗粒物中.不同城市站点降尘中碳组分的分布具有一致性,不同土壤尘中碳组分的差异较大.城市和土壤降尘中碳组分主要受生物质燃烧、燃煤、汽油车和柴油车尾气等污染源的影响,PM10和PM2.5中含碳气溶胶的来源贡献率存在差异.  相似文献   

13.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

14.
2009年春季成都城区碳气溶胶污染特征及其来源初探   总被引:12,自引:3,他引:9  
于2009年4月19日至5月17日在成都城区每天采集PM2.5样品,然后对样品进行8种碳组分、水溶性有机碳、左旋葡聚糖及水溶性离子分析,初步探讨了碳气溶胶的来源.结果发现:成都春季PM2.5日均值质量浓度为(133.2±55.5)μg·m^-3,TC、OC、EC和WSOC质量浓度分别为(26.4±7.2),(20.7±...  相似文献   

15.
南京大气PM2.5中碳组分观测分析   总被引:17,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   

16.
为对比城区与相邻县区不同空气质量下的碳组分污染特征,分别在成都市和仁寿县采集霾期及非霾期PM_(2.5)有效样品共计88个,确定其相应质量和各碳组分浓度[有机碳(OC)、元素碳(EC)和二次有机碳(SOC)等],并进行各碳组分之间的相关性及主成分分析.结果表明,不同空气质量下的城区污染物浓度均高于县区.OC和EC密切相关,非霾期的相关性系数较霾期大.与城区相比,霾期县区的SOC/PM_(2.5)较大,说明其受二次有机物污染更为明显;但城区非霾期二次气溶胶占比明显高于霾期,表明霾期的一次排放是城区大气污染的主要原因.燃煤、机动车排放和生物质燃烧均是两个区域PM_(2.5)的主要来源.  相似文献   

17.
为研究菏泽市冬季大气颗粒物中碳组分的污染特征和来源,于2016年1月采集菏泽市冬季大气PM2.5和PM10样品,基于热光反射法分析样品中OC(有机碳)、EC(元素碳)及8个碳组分[OC1、OC2、OC3、OC4、EC1、EC2、EC3和OP(裂解碳)]的含量,并计算得到ρ(Char-EC)(Char-EC为燃料燃烧后固体残渣中的EC)和ρ(Soot-EC)(Soot-EC为燃烧后气相挥发物质再凝结形成的EC),以定性识别大气颗粒物中碳组分的来源.结果表明,菏泽市冬季大气颗粒物样品中碳组分浓度处于较高水平,PM2.5中的ρ(OC)、ρ(EC)分别为26.34、9.22 μg/m3,PM10中ρ(OC)、ρ(EC)分别为31.82、10.71 μg/m3.采样期间大气PM2.5中碳组分(OC、EC、OC1、OC2、OC3、OC4、EC1、EC2、EC3、Char-EC、Soot-EC)浓度与PM10中相应各组分浓度的比值均大于0.5(0.60~0.90),表明碳组分多集中于细粒子(PM2.5).大气颗粒物样品中各碳组分浓度具有明显空间差异,各点位大气PM2.5和PM10中ρ(OC)均显著高于ρ(EC)(T检验,P < 0.05).菏泽市冬季大气PM2.5和PM10中Char-EC/Soot-EC(二者质量浓度之比)分别为10.04、8.00,并且存在显著的空间差异性(T检验,P < 0.05).PMF(正定矩阵因子分解法)解析结果表明,菏泽市冬季大气PM2.5和PM10中碳组分来源主要有4类,包括两类柴油车(1类排放的碳组分中以EC2为主,定义为柴油车-1;1类排放的碳组分中以EC3为主,定义为柴油车-2)、汽油车、生物质燃烧和燃煤混合源,对大气PM2.5中碳组分的分担率分别为13.98%、5.13%、24.47%、41.97%,对大气PM10中碳组分的分担率分别为16.08%、8.21%、18.34%、47.35%.可见,菏泽市冬季大气PM2.5和PM10中碳的主要来源是柴油车、汽油车、生物质燃烧和燃煤.   相似文献   

18.
为了解我国不同城市PM2.5源的碳成分谱特征和地域差异,采集沈阳市、十堰市和乌鲁木齐市的燃煤源、柴油车尾气源、汽油车尾气源和餐饮源样品,使用热光透射法分析PM2.5中的总碳(TC)、有机碳(OC)和元素碳(EC),以及细分的8种碳组分(OC1,OC2,OC3,OC4,EC1,EC2,EC3和OPCT),构建各类污染源碳成分谱.结果表明:3个城市4类源TC/PM2.5从高到低分别为:餐饮源(65.1%±8.4%)、柴油车尾气源(46.2%±9.5%)、汽油车尾气源(37.7%±3.5%)和燃煤源(17.3%±8.0%);OC/TC在餐饮源中最高(98.0%±0.5%),EC/TC在柴油车尾气源中最高(38.6%±8.5%).3个城市同类源的碳组分含量受污染源细分后的不同类型影响有一定差异,但归一化处理后总体仍表现为燃煤源中OC2(14%~30%)和OC3(13%~23%)含量最高,柴油车尾气源中EC2(22%~56%)含量最高,汽油车尾气源中OC2(24%~41%)、OC1(16%~42%)和OC3(12%~26%)含量最高,餐饮源中OC2(21%~43%)和OC3(23%~49%)含量最高.不同污染源的OC/EC值为燃煤源在0.4~7.6之间,柴油车尾气源在0.2~5.6之间,汽油车尾气源在1.1~38.5之间,餐饮源在6.4~170.2之间.分歧系数结果显示3个城市不同源的碳成分谱具有差异性,同类源的碳成分谱具有相似性.将3个城市同类源碳成分谱合并后利用化学质量平衡灵敏度矩阵得到OC2,OC3,OC4,EC1和OPCT可共同作为燃煤源的标识组分;EC2是柴油车尾气源的标识组分;OC1,OC2和OC3可共同作为汽油车尾气源的标识组分;OC2和OC3可共同作为餐饮源的标识组分.沈阳市、十堰市和乌鲁木齐市相同污染源相似的碳成分谱和一致的标识碳组分可为国内其他城市相关研究提供数据参考.  相似文献   

19.
Xiamen,located on the southeastern coastal line of China,is undergoing rapid urbanization and industrialization,so its air quality has a trend of degradation.However,studies on level,temporal and spatial changes of fine particles (PM2.5) and their carbonaceous fractions are scarce.In this article,abundance,sources,seasonal and spatial variations,distribution of organic carbon (OC) and elemental carbon (EC) in PM2.5,were studied at suburban,urban and industrial sites in Xiamen during four season-representative months in 2009-2010.PM2.5 samples were collected with middle volume sampler and were analyzed for OC and EC with thermal optical transmittance (TOT) method.Results showed that the annual average PM2.5 concentrations were 63.88-74.80 μg/m3 at three sites.While OC and EC concentrations were in the range of 15.81-19.73 μg/m3 and 2.74-3.49 μg/m3,respectively,and clearly presented the summer minima and winter maxima in this study.The carbonaceous aerosol accounted for 42.8%-47.3% of the mass of PM2.5.The annual average of secondary organic carbon (SOC) concentrations in Xiamen were 9.23-11.36 μg/m3,accounting for approximately 56% of OC.Strong correlations between OC and EC was found in spring (R2 = 0.50) and autumn (R2 = 0.73),suggesting that there were similar emission and transport processes for carbonaceous aerosols in these two seasons,while weak correlations were found in summer (R2 = 0.33) and winter (R2 = 0.41).The OC/EC ratios in PM2.5 varied from 2.1 to 8.7 with an annual average of 5.7,indicating that vehicle exhaust,coal smoke and biomass burning were main source apportionments of carbonaceous fractions in Xiamen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号