首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
城市是能源消耗的中心,电气化可以整合城市能源结构,实现清洁能源高效利用,探究城市低碳路径下加速电气化的协同减排影响对实现城市减污降碳至关重要.基于长期能源替代规划模型(LEAP-DG),设置了基准情景、低碳情景和加速电气化情景等3类情景,评估电气化措施在不同电力结构下的减排潜力,量化重点部门的措施贡献,探讨广东省典型制造业城市东莞的协同减排效果.结果表明,电力结构优化促进了电气化措施的协同减排效果,低碳路径下加速电气化将进一步降低电力污染物排放强度,2050年,东莞市CO2、 NOx、 VOC和CO减排7.35×106、 1.28×104、 1.62×104和8.13×104 t, SO2和PM2.5消费侧减排量和生产侧增排量达到平衡.电气化渗透速率和电力结构优化协调发展是电气化措施实现减排效益的关键,工业和交通部门加速电气化将同时降低CO2和大气污染物排放,交通部门得益于燃油车和电动车的高...  相似文献   

2.
水泥行业是二氧化碳(CO2)排放的主要行业,其排放量占全球CO2总排放量的7%.随着城市化发展,我国已成为近20年来全球最大的水泥生产国.为开展我国水泥行业CO2减排研究,本文运用Gompertz模型和下游需求预测法对2020-2050年我国水泥需求量进行预测,建立高、低需求情景;然后基于LEAP模型,预测2020—2050年不同需求和不同减排技术下的CO2排放的变化趋势,并明确不同控制技术对CO2减排的定量贡献.结果表明,在高需求情景下,我国水泥需求量将在2030年达峰,达峰值为2488×106t;而在低需求情景下,水泥需求量已于2023年达峰,达峰值为2370×106t.节能改造、燃料替代、降低熟料含量、CCS技术对水泥行业CO2减排均有显著贡献,其中,短期主要依靠节能改造和燃料替代,有助于减少化石燃料相关的CO2排放量,2020—2030年累计减排贡献分别为25%和34%;在2030年...  相似文献   

3.
节能减排:关键在完善结构调整保障机制   总被引:9,自引:0,他引:9  
国际制造业转移和工业化进程的加快,使得我国成为"世界工厂",高耗能的工业,特别是其中的重化工业比重居高不下.2008年前4个月,我国高耗能产业增速虽然有所回落,但仍在继续扩张.这无疑会使节能减排的形势更加严峻.不同产业单位产出的能耗大不相同,据测算,如果服务业增加值占GDP比重提高1个百分点,而工业增加值占GDP比重相应降低1个百分点,单位GDP能耗可降低约1个百分点.由此可见,产业结构调整对节能减排的贡献率极高.因此,节能减排的关键是调整经济结构.而调整经济结构的关键是按照控制增量、调整存量、优化技术和强化责任的思路,完善有利于节能减排的经济结构调整保障机制.  相似文献   

4.
京津冀地区是我国钢铁行业集中布局的地区,也是大气污染最突出的地区.分析京津冀地区钢铁行业各类治污工具的中长期减排影响,对于选择最优减排措施、加快推动该地区大气污染治理意义重大.构建基于LEAP模型的京津冀地区钢铁行业模型,以2015年为基准年,以每5 a为一个时间节点,结合规模减排、结构减排、技术减排、末端治理4种减排措施,模拟计算了4种单一政策情景及4种组合政策情景下2015-2030年京津冀地区钢铁行业主要污染物(SO2、NOx、PM10、PM2.5、CO2)排放量及相应的减排影响.结果表明:在单一政策情景下,规模减排情景对5种污染物减排效果均十分显著.在组合政策情景下,4种减排措施叠加的综合减排情景效果最好,在该情景下京津冀地区钢铁行业到2030年SO2、NOx、PM10、PM2.5、CO2排放量将分别削减27.73×104、17.85×104、42.94×104、27.35×104、23.15×107 t;在规模-末端治理情景下,除CO2外其余污染物减排效果仅次于综合减排情景;规模-结构减排情景对PM10和PM2.5的减排效果相对明显;规模-技术减排情景对CO2、SO2、NOx的减排效果相对明显.研究显示,京津冀地区钢铁行业需要在大力淘汰落后过剩产能、缩减产量等源头治理措施的基础上,持续加强末端治理、提高废钢比例、提升节能减排技术水平等协同治理能力,以提高治污减排效果.   相似文献   

5.
为了解“十三五”期间天津市PM2.5减排效果,基于2015~2020年不同大气污染治理措施的减排量核算结果,利用空气质量模型和高时空分辨率PM2.5监测数据,对“十三五”期间天津市PM2.减排效果进行分析.结果表明,2015~2020年,天津市SO2、 NOx、 VOCs和PM2.5的排放量分别减少4.77×104、 6.20×104、 5.37×104和3.53×104t,其中工艺过程、散煤和电力治理对SO2的减排贡献大,工艺过程、电力和钢铁治理对NOx的减排贡献大,工艺过程对VOCs的减排贡献最大,工艺过程、散煤和钢铁治理对PM2.5的减排贡献大.“十三五”期间天津市PM2.5浓度平均值、污染天数和重污染天数明显下降,分别较2015年下降31.4%、 51.2%和60.0%;与前...  相似文献   

6.
工业碳减排绩效及其影响因素动态分解   总被引:1,自引:0,他引:1  
进入21 世纪以来,中国工业碳排放总量仍在波动中增长。为了考查近10 a 来中国工业碳减排绩效,并定量分析影响工业碳减排的主要因素对碳减排的贡献变化情况,论文通过构建中国工业碳排放数据库并运用“精确”的Laspeyres 分解方法,对中国2001-2010 年36 个工业行业CO2减排的影响因素进行了动态分解,研究结果表明:①虽然中国工业CO2排放总量在不断增加,但CO2排放增长率和工业碳排放强度双双降低,在考察周期内,CO2排放总量从2001 年 2.89×109 t 增长到2010 年7.16×109 t,工业碳排放量增长率则从2003 年最高值18.86%持续下降至2009 年的5.77%,工业整体碳排放强度由2001 年的29.14 t/104元下降到2010 年的18.12 t/104 元;②工业经济规模不断增加是工业CO2排放增加的主导因素,技术进步和结构调整则有效抑制了CO2的增加,10 a 间规模效应对CO2排放总量增加的贡献度年均达到191.81%,但是由于受到技术进步效应和结构调整效应的共同作用,10 a 来总效应值年均只有109.15%;③较之技术进步效应,结构调整效应对工业CO2减排的贡献度更大,结构调整效应累计促进碳减排达2.07× 109 t,而技术进步效应促进减排的总量只有1.14×109 t。论文认为,着力中长期减排政策的制定,以保证技术进步在碳减排中持续发挥作用,同时充分挖掘结构调整对减排作用潜力是中国实现工业碳减排的务实选择。  相似文献   

7.
中国发展非粮燃料乙醇减排CO2的潜力评估   总被引:1,自引:1,他引:0  
科学地评估中国发展非粮燃料乙醇减排CO2的潜力对于制定应对气候变化措施和燃料乙醇发展政策具有重要的现实意义。论文提出了基于占地属性的燃料乙醇原料划分方法,并指出低质宜耕边际性土地与农作物副产品资源可作为占地型原料的种植空间和非占地型原料的来源。随后,构建了燃料乙醇替代的CO2减排潜力的评估模型,并对2015年和2030年中国发展非粮乙醇的减排潜力进行了评估。评估结果表明,在2015和2030年我国非粮燃料乙醇可产生1 094.7×104 t和4 902.7×104 t的CO2减排潜力,且形成以非占地型原料乙醇为主的减排结构。从减排潜力空间分布上看,我国在2015年和2030年将分别呈现出以微度、低度减排区为主和极高、高度减排区为主、"∏"型的空间结构。  相似文献   

8.
京津冀大气污染传输通道城市燃煤大气污染减排潜力   总被引:1,自引:0,他引:1  
以京津冀大气污染传输通道城市为研究对象,建立了燃煤电厂、燃煤锅炉、农村散煤三大污染源主要大气污染物排放计算方法,以2015年为基准年,梳理现有燃煤污染减排政策措施,对2017年“2+26”城市燃煤污染源SO2、NOx、PM、PM10、PM2.5的减排潜力进行了分析.结果表明:实施燃煤电厂超低排放改造、燃煤锅炉淘汰或改造、散煤改电(气)等措施后,“2+26”城市2017年燃煤SO2、NOx、PM、PM10、PM2.5排放量分别达到87×104t、56×104t、64×104t、45×104t、32×104t,预计比2015年分别减少44%、48%、33%、32%、30%.燃煤电厂、燃煤锅炉、农村散煤替代各项污染物减排比例分别在55%~70%、31%~38%、18%~21%,未来农村散煤治理的减排潜力还较大.从各城市情况来看,多数城市燃煤SO2、NOx减排主要来自燃煤电厂超低排放改造;保定、廊坊等城市燃煤颗粒物减排量较大,得益于散煤治理工作的大力推进.  相似文献   

9.
水泥行业是主要的CO2排放行业,2020年我国水泥行业CO2排放占全国排放总量的12%,占全国工业过程排放的60%以上. 为开展水泥行业碳达峰路径研究,提出了基于社会、经济等影响因素的多因素拟合分析模型以及基于主要下游产业的需求预测方法,对2021—2035年我国水泥熟料及水泥产量进行预测;并通过对水泥行业碳排放特征的分析,考虑主要控制措施的可行性,构建我国水泥行业CO2排放情景,对2021—2035年水泥行业CO2排放趋势进行测算,在此基础上分析水泥行业碳达峰路径及相关政策建议. 结果表明:①中国水泥熟料消费量在“十四五”期间仍有一定上升空间,随着经济社会的绿色转型,水泥市场需求在“十五五”时期下降. ②在此基础上,通过全面加强产能控制、加大落后产能淘汰力度、推广高效节能技术、积极推进原燃料替代,可推动水泥行业碳排放于“十四五”中期达峰,峰值为13.8×108~14.2×108 t,经过2~3年的峰值平台期后呈持续下降趋势,2030年水泥行业碳排放量将较2020年下降15%~18%. ③2030年,水泥熟料及水泥产量的下降将带动水泥行业碳排放量较2020年减少1.4×108 t. 在各项技术措施中,节能改造是CO2减排潜力最大的措施,2030年能效提升可带动水泥行业CO2排放量较2020年减少0.38×108 t;其次是利用固体废物替代燃煤,可带动行业CO2排放量较2020年减少0.17×108 t. 研究显示,推动我国水泥行业碳达峰及碳减排,需在加强产量控制避免水泥过度消费的基础上,聚焦节能改造和原燃料替代措施.   相似文献   

10.
中国钢铁行业二氧化碳排放达峰路径研究   总被引:2,自引:2,他引:0       下载免费PDF全文
钢铁行业是我国重要的CO2排放源. 作为典型的资源能源密集型产业,钢铁行业加快绿色低碳转型、尽早实现碳达峰并有效降碳,既是行业自身高质量发展的内在需要,也是支撑落实国家碳达峰、碳中和目标的客观要求. 本文综合考虑经济社会发展、资源能源利用、工艺结构调整、低碳技术应用等因素影响,开展了基于情景分析的钢铁行业CO2排放达峰路径研究,对不同情景下钢铁行业CO2的排放趋势进行测算,识别钢铁行业CO2减排的主要驱动因素,判断推动钢铁行业碳排放达峰的关键举措,为制定“双碳”目标背景下钢铁行业CO2排放控制策略提供参考. 测算结果表明,我国钢铁行业CO2总排放量有望在2020—2024年期间达到峰值;行业CO2总排放量峰值为18.1×108~18.5×108 t,达峰后到2030年降幅将超过3×108 t. 研究显示,粗钢产量是决定我国钢铁行业碳排放能否快速达峰的关键,加大废钢资源利用、推进外购电力清洁化以及提高系统能效水平是2030年前钢铁行业实现碳排放达峰并有效降碳的重要途径. 到2030年,粗钢产量降低、加大废钢资源利用、推进外购电力清洁化、提高系统能效水平以及氢能炼钢和二氧化碳捕集、利用与封存(CCUS)等前沿技术对钢铁行业CO2减排的贡献率分别为11%~52%、34%~52%、7%~20%、5%~13%和2%~3%.   相似文献   

11.
为降低水泥行业碳减排成本,确定最优碳减排技术路径,研究基于经济-能源模型,核算中国水泥行业最新碳减排技术的边际减排成本,使用情景分析方法,研究了与未实施减排技术相比,2020年17项技术的碳减排潜力,并将其作为基准情景,和2025,2030,2035年3个未来情景的碳减排潜力作比较,从而得出不同情景下的边际减排成本曲线。结果表明:1)2020年我国水泥行业17项减排技术的平均减排成本为124元/tCO2,2020年实现总减排量3043万t,总减排成本为10.3亿元;在保持技术水平和排放水平不变的情况下,2035年17项减排技术可实现总减排量21307万t,总减排成本为103.4亿元。2)在各项减排技术中,集成模块化窑衬节能技术与水泥熟料烧成系统优化技术,具有较高减排潜力和较低减排成本,适合广泛推广;CO2捕集利用与封存(CCUS)技术虽具有较高减排成本,但是未来减排潜力较大,应给予重视。3)技术普及率与熟料产量是决定减排潜力的重要因素,因此未来水泥行业应注重节能减排政策技术推广与产业结构调整,可进一步实现减排目标。  相似文献   

12.
基于IPCC温室气体排放清单指南中的CO2排放因子与核算方法,估算了1995—2010年中国服务业能源消费与CO2排放量,并对其总体变化趋势进行时间序列分析;以LMDI(对数平均迪氏指数)法辨识与分解3个时段(1995—2000年、2000—2005年和2005—2010年)中影响中国服务业CO2排放量变动的关键因素及其对CO2排放量的贡献值. 结果表明:1995—2010年中国服务业能源消费CO2排放量增长态势明显,累计排放总量为853197.55×104t;服务业能源消费主要依赖于高碳化能源燃料,各年度油品和煤品分别占能源消费总量的67%~74%和5%~27%;LMDI分析结果显示,1995—2010年产业规模和人口效应引起CO2排放增加量分别为133357.10×104和7691.25×104t,能源效率和能源结构引起CO2排放减少量分别为59034.50×104和23898.60×104t. 提出CO2减排对策:①以经济、政策和监管手段促进服务业节能减排;②依托科技创新提高能源综合利用效率,降低服务业CO2排放量.   相似文献   

13.
为研究燃煤电厂在燃煤发电机组结构优化调整和不同末端控制措施条件下PM2.5的排放情况,以2012年为基准年,设计了分阶段、分地区不断优化的控制情景(基准、适中、加严和最严情景),并依据《大气细颗粒物一次源排放清单编制技术指南(试行)》建立的减排潜力模型对2017年、2020年和2030年我国燃煤电厂PM2.5减排潜力及空间分布进行预测分析. 结果表明:通过燃煤发电机组结构优化调整,2017年、2020年和2030年我国燃煤电厂PM2.5排放量与调整前相比可分别减少3.62×104、8.52×104和24.43×104 t,但相对于基准年而言,PM2.5排放量并未减少;进一步结合末端控制措施优化进行控制,PM2.5最大减排潜力(相对于基准年而言)可分别达到59.42×104±7.83×104、82.83×104±5.82×104和81.89×104±6.76×104 t,最高减排比例分别达到66.5%±8.8%、92.8%±6.5%和91.6%±7.6%. 我国各省(市/区)燃煤电厂PM2.5减排潜力与其煤耗量和采取的控制措施有关,燃煤量越大,控制措施越严格,则减排潜力越大. 京津冀、长三角和珠三角地区燃煤电厂在实现超低排放,即最严情景下2017年PM2.5减排潜力分别为5.93×104、12.04×104和4.70×104 t;2017年、2020年和2030年这3个区域PM2.5总减排潜力分别为22.68×104、22.36×104和22.07×104 t. 内蒙古、江苏、山东、广东、河北和山西等地在实施超低排放后,其PM2.5减排潜力均超过4×104 t,并且在全国范围内实施超低排放可显著降低我国燃煤电厂PM2.5排放量.   相似文献   

14.
山西作为我国的能源大省,其碳排放强度更是持续位于全国最高水平,分析山西省CO2排放影响因素,探究其发展模式,对于山西省的低碳发展意义重大.基于STIRPAT模型,将山西省能源CO2排放的影响因素确定为人口、城镇化率、人均GDP、第二产业占GDP比重、能源强度.在岭回归拟合分析的基础上,利用灰色GM(1,1)模型对山西省CO2排放驱动因素值进行预测,以提高能源CO2排放预测的准确性,并结合情景分析方法,为山西省的CO2减排设计了10种不同的发展情景.结果表明:①人口对山西省CO2排放影响最大,其次是城镇化率和第二产业占GDP比重.②在当前经济发展阶段,能源强度和人均GDP等因素对山西省的CO2排放影响不大,但能源强度对CO2排放的抑制作用不可忽略.③山西省CO2减排最佳的情景方案为适当控制人口数量和城镇化进程、加快产业结构的转型和技术的革新、降低第二产业占GDP比重和能源强度,并且大力推广新能源和清洁可再生能源的开发使用以优化能源消费结构.在该情景下,山西省2020年的CO2排放量可以控制在5.16×108 t.   相似文献   

15.
利用情景分析法建立了2010—2030年我国电力行业SO2、NOx、PM10、PM2.5的排放控制情景,分析了发电技术结构调整、加严及进一步加严末端控制措施(脱硫、脱硝、除尘等)的减排成本和效果. 结果表明:到2030年,相对于趋势照常情景,若加严末端控制设施,将新增336×108元投资,SO2、NOx、PM10、PM2.5排放量可分别减少121×104、852×104、18×104、10×104 t;若进一步加严末端控制措施,将再新增25×108元投资,NOx、PM10、PM2.5可分别进一步减排45×104、23×104、15×104 t;若进行发电技术结构调整,将新增2 383×108元投资,SO2、NOx、PM10、PM2.5排放量分别减少248×104、420×104、18×104、10×104 t;2020年和2030年发电技术结构调整带来的单位污染物减排成本分别为15 374和34 239元/t,是末端控制措施加严的3倍以上,但其能提供更大的SO2减排空间并具有降低能耗和减排温室气体等协同效益. 从成本效果角度考虑,建议采用加严末端控制措施方案,同时调整发电技术结构、合理发展清洁发电技术,以为污染物减排提供更大空间.   相似文献   

16.
钢铁行业是我国主要的能源消费及CO2排放行业,推动钢铁行业低碳绿色发展已成为实现我国碳达峰、碳中和的重要环节。为此,研究围绕能源结构调整、工艺结构优化、节能减排技术推广和CCUS技术应用4方面,通过设置基础情景、稳定发展情景和强化减排情景3类情景,利用边际减排成本曲线对我国钢铁行业34项减排技术的减排成本和减排潜力进行分析。结果表明:在稳定发展情景下,我国钢铁行业平均减排成本为433元/tCO2,所有技术的总减排成本为2100亿元,总减排潜力为4.9亿t。在各项减排技术中,废铁-电弧炉炼钢具有较高的减排经济效益,其以较低的单位减排成本贡献了钢铁行业近50%的碳减排量。未来,我国应加快推进长流程炼钢向短流程炼钢的发展,推动钢铁行业生产工艺的结构性调整。  相似文献   

17.
为探究水泥行业的碳中和实现路径,从我国的国情出发,结合水泥行业生产特点,对水泥行业未来低碳发展进行了预测. 结果表明:①在碳中和背景下,水泥行业仍会存在约2×108~3×108 t的CO2排放,产能减量是主要的CO2减排手段,结合现阶段我国较低的水泥集约化程度和较短的熟料生产线服役年限,产能减量政策的推荐和实施应在合理的规划和政策下推进,低碳技术的发展仍是实现碳中和的关键. ②通过能效提升节能技术可实现CO2减排约1.19×108 t/a. ③未来在替代原燃料来源、种类及替代率得到全面提升的情况下,原燃料替代技术可基本实现行业10%的CO2减排量. ④目前,低碳水泥每年产量不足水泥总产量的5%,未来仍需通过产品技术创新,提高其生产及使用占比. ⑤CCUS (CO2捕集、利用与封存)技术是水泥行业实现碳中和的必要路径,混凝土固碳、钙循环等在水泥行业具有典型行业优势的技术可与生产工艺紧密结合,成为未来水泥行业CCUS技术的重要发力点. 研究显示:结合水泥行业CO2减排预测及技术路径分析,短期内我国水泥行业降碳主要思路为控制源头排放,包括流程智能化、余热利用、原燃料替代和产业结构调整等路径,实现碳达峰及CO2减排;中期随着生产线服役年限临近及低碳水泥制备技术的发展,支撑行业碳的大幅削减;后期通过CCUS、富氧燃烧、可再生能源利用等技术来实现水泥行业碳中和的目标.   相似文献   

18.
中国西北旱区农业水土资源利用情景潜力研究   总被引:7,自引:1,他引:6  
西北旱区水土资源供需矛盾突出,同时作为该区农业生产的瓶颈因素,决定该区经济社会生态可持续发展,因此有必要开展西北旱区农业水土资源相结合的空间情景潜力研究。论文采用水土资源匹配指数计算分析了西北旱区现状年(2010年)农业水土资源的匹配状况,采用农业水土资源利用潜力估算方法计算了西北旱区2020、2030年RCP 8.5和RCP 4.5两种情景下的农业水土资源利用潜力,实现了西北旱区农业水土资源利用潜力的可视化表达。结果表明:2020和2030年RCP 8.5和RCP 4.5排放情景下,相对于2010年,西北旱区各省2020和2030年的总农业水资源量和种植面积均减小。西北旱区6省份2020和2030年两种情景下整体综合效益和整体潜力值均为正,表明各省种植结构整体得到了优化。2020年RCP 8.5和RCP 4.5情景下,西北旱区农业水土资源利用潜力分布范围分别在-0.10×104~0.83×104元/hm2之间和 -1.20×104~0.97×104元/hm2之间;2030年RCP 8.5和RCP 4.5情景下,农业水土资源利用潜力分布范围分别在-0.39×104~2.17×104元/hm2之间和-0.36×104~1.66×104元/hm2之间。  相似文献   

19.
黄敏  沈月琴  黄水灵 《自然资源学报》2011,26(11):1850-1857
近年来,CO2等温室气体的过多排放日益为世界各国所重视。文章对浙江省近年外贸中的CO2含量进行分析研究。内涵碳的净出口量与其占全省碳排放的比值都呈现增加的势头;两个时期的进(出)口的规模变动效果全是正向;两个时期的进(出)口结构变动效果有明显差异,2005-2008年期间,出口的结构变动效果为7 201.89×104 t,进口的结构变动效果综合后为-3 124.27×104 t;在此阶段,中间投入变动效果有明显的改善,2002-2005年进(出)口的中间投入变动效果是40.34×104 t(32.21×104 t),2005-2008年阶段是-3 428.33×104 t(-4 942.21×104 t);单位GDP碳排放量变动效果也有明显改善,并且两个时期单位GDP碳排放量变动效果主要是由单位GDP能耗变动效果所决定;两个时期进(出)口单位能耗的碳排放量变动效果均非常小。  相似文献   

20.
面对国家碳达峰、碳中和战略目标,“十四五”时期,北京市提出推进大气污染物和温室气体排放协同控制,因此,开展协同控制效果评估对于持续改善空气质量和减少碳排放具有重要意义 .本研究在减排措施筛选和减排量测算的基础上,分析了主要大气污染物和 CO2的减排潜力,采用协同控制效应坐标系法、协同控制交叉弹性分析法和协同评估指数法,对减排措施主要大气污染物 SO2、NOx、PM10、VOCs 和温室气体CO2的协同控制效果进行评估 . 结果表明,减排措施对于 SO2、NOx的减排潜力均在 20% 以上,对于 CO2的减排潜力约为 7%. 各项措施对 NOx、PM10、VOCs和 CO2排放具有协同控制效果 .从坐标系法和评估指数法分析结果来看,浅山区煤改清洁能源和压减本地火力发电量对 SO2和 CO2的协同控制效果较好...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号