首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
扰动能够强化水体溶解氧的恢复并加快传质,增强水体的自净作用,有利于水体和底泥COD的降解,是一种常用的污染水体的修复方法。文章通过人工模拟的水体,构建搅拌和曝气两种上覆水扰动条件,研究了在这两种条件下水体中有机物含量以及底泥中微生物量的变化情况,探讨了扰动对水体有机物去除的影响。研究结果表明:(1)与对照情况相比,在搅拌、曝气条件下水中ρ(溶解氧)分别由0.2 mg.L^-1提高到1.0和8.0 mg.L^-1左右;曝气条件下底泥中蛋白含量及细菌数均最高;(2)底泥中w(脱氢酶活性)在搅拌和曝气条件下分别为0.52和0.46μg.g^-1左右;(3)曝气条件下对上覆水中有机物的去除呈现出较好的降解趋势。因此,运用曝气技术既能加速有机物的生化降解,改善水质;又可强化水体溶解氧的恢复,创造了微生物生长繁殖的适宜环境,增强了水体中微生物的活性,促进了水体自净能力的提高,在治理河道污染的应用中具有广阔的前景。  相似文献   

2.
刘晓伟  谢丹平  李开明  金中  江栋  李明玉 《生态环境》2011,20(11):1713-1719
通过分析底泥氮污染物释放规律和转化过程,以及底泥生境、氮形态变化和氮循环功能微生物群落结构变化的规律,探讨了不同曝气复氧条件影响底泥氮生物地球化学循环的生物代谢、物理化学联合作用的机制。结果表明:曝气复氧对底泥中氮的生物地球化学循环影响是一个包括微生物代谢作用和物理化学作用的复杂联合作用过程。水体好氧环境的改变主要引起参与底泥氮循环的硝化、亚硝化和反硝化功能菌群群落结构的演变,对异养菌和氨化菌的影响不大,证明环境好氧条件的改变对底泥有机质生物分解产生氨氮的微生物代谢过程影响不大,主要对底泥释放的氨氮硝化、反硝化等生物转化过程产生大的影响。不同溶解氧条件下,底泥释放的氮素在微生物作用下主要以NH4+-N和NO3--N的形式进入试验体系,并在特定的氧化还原电位(临界值-200 mV)和pH(临界值6.70)条件下通过物理化学作用在底泥中以离子交换态氮(IEF-N)、碳酸盐结合态氮(CF-N)、铁锰氧化态氮(IMOF-N)及有机态和硫化物结合态氮(OSF-N)等不同形态氮相互转化,同时,在氮的转化和循环过程中部分输入上覆水体。在低溶解氧组实验条件下[ρ(DO)〈0.5 mg.L-1],底泥向水体输出氮总量为底泥可转化态氮的19.7%,主要为氨氮,最大释放速率达到289.13 mg.m-2.d-1,释放的质量浓度可达到18.8 mg.L-1;好氧条件下(DO饱和),底泥向水体输出氮总量为底泥可转化态氮的1.8%;好氧-缺氧条件下为11.7%,主要以N2的形式释出系统。  相似文献   

3.
广东省不同水库底泥理化性质对内源氮磷释放影响   总被引:4,自引:0,他引:4  
采用分级浸取分离方法,分析了广东省10个典型水库底泥的氮磷营养形态分布和污染状况;并通过模拟覆水试验,研究了不同水库底泥氮磷形态及理化性质对内源氮磷释放的影响。结果表明:广东省10个水库底泥氮磷污染较为严重,全氮含量为0.33~3.31 g.kg^-1,平均值为1.70 g.kg^-1;全磷含量为0.14~2.63 g.kg^-1,平均值为1.31 g.kg^-1。底泥氮磷主要以可转化态形式存在,可转化态氮磷含量占总氮磷含量百分比分别为41.2%~71.4%和53.6%~93.2%。底泥内源氮磷的释放主要受氮磷的赋存形态和含量的影响,水库底泥总氮的释放量与离子交换态氮(IEF-N)、碳酸盐结合态氮(WAEF-N)、铁锰氧化物结合态氮(SAEF-N)呈极显著正相关关系,相关系数分别为0.931、0.814、0.807;总磷的释放量与碳酸盐结合态磷(WAEF-P)、铁锰氧化物结合态磷(SAEF-P)呈极显著正相关,相关系数分别为0.960、0.957;这几种氮磷形态是上覆水体中氮磷的重要来源。同时底泥内源氮磷释放还与底泥机械组成有关,其中总氮和总磷释放量与底泥黏粒质量分数呈显著正相关,相关系数分别为0.738、0.638;而总氮的释放量与底泥砂粒质量分数呈显著负相关,相关系数为-0.685。这可能与可转化态氮磷更多的分布在细粒级底泥中有关,细颗粒底泥氮磷释放是上覆水体氮磷的主要来源。  相似文献   

4.
底泥间歇扰动对静止水体磷迁移的累加效应   总被引:6,自引:0,他引:6  
模拟了静止水体的底泥间歇扰动过程,研究了底泥间歇扰动对上覆水中磷迁移的累加效应.结果表明,随着底泥扰动次数的增加,溶解性活性磷(SRP)、溶解态磷(DTP)、生物可利用颗粒态磷(BAPP)、生物有效磷(BAP)等形态磷含量显著降低.与第1次扰动相比,第5次扰动后,SRP、DTP、BAPP、BAP分别降低了84.26%、71.60%、59.21%、62.26%.底泥扰动通过物理、化学吸附使SRP在DTP中所占的比重从83.31%降至49.38%,同时抑制了BAPP向DTP的转化,从而降低了水体富营养化的风险。  相似文献   

5.
设置0(对照)、20、60和100g·kg-1 3个底泥施用量水平,研究施用底泥对冬小麦籽粒Cd含量以及土壤微生物群落功能多样性的影响。结果表明,60和100g·kg-1底泥施用处理小麦穗质量和千粒重显著高于对照(P〈0.05)。各处理间小麦籽粒cd含量无显著差异。与对照相比,施用底泥并没有显著改变土壤中可培养细菌、真菌和放线菌的数量。整个培养过程中土壤微生物平均颜色变化率(IAWCD)以及96h时微生物多样性指数(Shannon指数、Simpson指数、McIntosh指数)在对照与底泥施用处理间无显著差异。主成分分析(PCA)表明,仅有占总变量方差14.22%的PC3能识别出对照土壤微生物群落碳源利用谱与底泥施用处理间的差异,而PCI(21.76%)、PC2(16.32%)和PC4(11.62%)则无法将对照与底泥施用处理区分开来。可见,该试验条件下合理的底泥施用量并不会对小麦籽粒Cd含量、微生物功能多样性和土壤质量产生显著影响。  相似文献   

6.
采用自行研发的泥-水界面微孔曝气系统,开展了底泥表面曝气和覆盖对城市重污染河道底泥磷释放及形态分布规律的影响研究.结果表明,微孔曝气能够有效提高上覆水的溶解氧(DO)和沉积物的氧化还原电位(Eh),能够将泥-水界面Eh维持在-100 m V左右,DO提高到6 mg·L-1以上.与对照比较,原位覆盖处理的上覆水DO和Eh有一定提高,但仍明显低于微孔曝气处理.与对照相比较,微孔曝气处理均有效降低上覆水中总磷(TP)和溶解性正磷酸盐(PO3-4)的含量.试验结束时,微孔曝气(A)和微孔曝气+原位覆盖处理(A+C)上覆水中TP含量由初始的0.201 mg·L-1分别降至0.062 mg·L-1和0.050 mg·L-1;上覆水中PO3-4含量由0.086 mg·L-1和0.078 mg·L-1分别降至0.026 mg·L-1和0.023 mg·L-1.与对照相比,微孔曝气处理明显降低了底泥间隙水中TP的浓度,在整个培养期间,其TP含量平均下降38.8%(A)和47.9%(A+C).底泥原位覆盖处理对抑制泥-水界面磷释放能力要弱于微孔曝气处理,而且在试验后期(50 d),上覆水中TP和PO3-4的含量均有所反弹.不管有无覆盖,泥-水界面微孔曝气处理均显著改变了表层底泥磷形态分布特征,显著降低了底泥中铁铝结合态磷(Fe/Al-P)组分比例,而钙结合态磷(Ca-P)含量比例却出现明显增加.单一的表面覆盖处理对底泥磷形态分布特征没有显著影响(P0.05).研究表明,与单一的处理效果相比较,泥-水界面纳米微孔曝气处理,并结合底泥原位覆盖,更有利于抑制城市重污染河道泥-水界面中磷的释放风险.  相似文献   

7.
中国富营养化湖泊的生物修复   总被引:65,自引:0,他引:65  
描述了中国湖泊富营养化污染现状,论述了湖泊富营养化形成的机理、生物修复富营养化湖泊(尤其是去除水体和底泥碳、氮、磷)的理论依据;提出了修复湖泊富营养化的技术途径,阐明了笔者对机械清淤和生物修复各自具有的优势的缺陷的看法。  相似文献   

8.
氧化还原电位及微生物对水库底泥释磷的影响   总被引:4,自引:0,他引:4  
为了解上覆水环境以及生物作用对水库底泥释磷作用的影响,本研究通过选取石砭峪水库底泥作为贫营养水库底泥代表,在实验室模拟了不同物理化学条件及不同微生物条件下水库底泥静态释磷过程.实验期间调查了上覆水处溶解氧(DO)、氧化还原电位(ORP)、pH等条件的影响,定期监测了上覆水中的溶解性正磷酸盐(PO3-4)、总磷(TP)、亚铁离子(Fe2+),反应开始前与结束后测定了底泥中不同持留形态的磷组分,其中包括铁铝结合态磷(Fe/Al-P)、钙磷(Ca-P)、无机磷(IP)、有机磷(OP)、总磷(TP),同时测定了反应前后底泥中碱性磷酸酶活性(APA).实验证明,ORP0 mV的强还原性条件能够促进底泥中的磷大量释放,同时伴随着大量的Fe2+进入上覆水中.底泥中释放的磷是以Fe/Al-P和IP为主,并且进入水体中的磷大部分是PO3-4,占超过水体中TP的50%以上.底泥中微生物的活动能够促进OP的分解和转化,对底泥中其他形态的磷转化为PO3-4进入水体影响不大.同时微生物也可以吸收上覆水中除PO3-4之外的磷营养进入底泥中储存起来.  相似文献   

9.
泥鳅对水田上覆水中氮素动态的生物扰动效应   总被引:8,自引:1,他引:7  
基于模拟试验,通过对比分析氮素含量在有/无泥鳅活动时的差异,探讨了底栖鱼类对水田上覆水中氮素动态的生物扰动效应.结果表明,泥鳅对水田上覆水中氮素动态具有强烈的扰动作用.泥鳅扰动组上覆水中氨氮和硝态氮含量在整个试验期间均高于对照组.泥鳅扰动对上覆水中亚硝态氮含量的影响未表现出明显的规律性,但显著增加了溶解性无机氮和总氮的含量.在试验前期扰动组上覆水中氨氮/总氮比值高于对照组,在试验中、后期则低于对照组.试验期间扰动组上覆水中溶解性无机氮/总氮比值明显高于对照组,说明泥鳅扰动显著增加了水田上覆水中溶解性无机氮占总氮的比例.  相似文献   

10.
城市水体黑臭问题正受到越来越多的关注,而水体中的悬浮物是水体污染物中的重要组成部分。以典型黑臭河流底泥和上覆水构建试验系统,研究底泥再悬浮对上覆水水质的影响。底泥再悬浮后,上覆水中颗粒物粒径立即显著升高,上覆水透明度急剧降低至10 cm以下,氨氮质量浓度升高至15~22 mg·L~(-1),氧化还原电位低于-12 m V,溶解氧低于1.1 mg·L~(-1),底层水体溶解氧甚至低于0.2 mg·L~(-1)。这表明底泥再悬浮是水体黑臭的重要原因之一。在沉降前期,上覆水中颗粒物粒径(D50)随沉降时间延长而显著降低,而在沉降中后期,水柱中各取样点颗粒物粒径稳定在3~4μm(D50)的小粒径水平,维持时间可达20-100 h。随着再悬浮次数增加,水柱恢复澄清的时间延长。底泥再悬浮使水中大粒径颗粒物加速沉降,水体浑浊程度的改善时间缩短,但对致黑的小粒径颗粒物影响较小,与此同时水体褪黑所需时间延长。随着底泥再悬浮-沉降次数的增加,水中硝酸盐氮、磷酸盐、CODCr的质量浓度均显著升高。其中,硝酸盐氮由0.4 mg·L~(-1)升高至0.7 mg·L~(-1),磷酸盐由0.2 mg·L~(-1)升高至1.2 mg·L~(-1),COD_(Cr)由370 mg·L~(-1)升高至524 mg·L~(-1),增幅分别为75%、500%、42%。底泥再悬浮会进一步加剧底泥中污染物向上覆水的释放。  相似文献   

11.
曝气复氧对富营养化水体底泥氮磷释放的影响   总被引:24,自引:0,他引:24  
采用实验室模拟,研究了曝气复氧对富营养化水体底泥氮磷释放的影响,结果表明,①溶解氧是影响底泥氮磷释放的重要因素,厌氧状态会加速底泥氮磷的释放。②正常条件下曝气复氧可以有效的控制底泥总磷的释放;曝气条件下高pH值无法控制底泥总磷的释放,搅动会对底泥总磷的释放产生轻微的影响,上覆水总磷浓度较高时底泥会发生吸磷现象,而温度则影响较小。③正常条件下曝气复氧可以控制比较封闭水体底泥氨氮的释放;曝气条件下温度对底泥氨氮和总氮的释放影响较大,即温度越高,抑制氨氮和总氮的释放效果越好,且低温会导致底泥氨氮和总氮的大量释放;曝气条件下搅动导致底泥释放更多的氨氮和总氮。  相似文献   

12.
浮叶植物重建对富营养化湖泊氮磷营养水平的影响   总被引:16,自引:1,他引:16  
利用太湖五里湖污染底泥,在不破坏表层沉积物形态和结构的情况下,利用大口径的采样器采集沉积物柱状样,研究浮叶植物荇菜(Limnanthemun nymphoides)在此底泥上适应性生长情况及其对水体以及沉积物中氮磷的影响。结果表明,在培养实验过程中,荇菜生长使上覆水体中的氮、磷营养水平逐渐降低,藻类的生长明显受到克制,水体透明度增加,水质逐渐改善。通过植物根系对沉积物和问隙水中营养盐的直接吸收,使表层(0~5cm)沉积物与问隙水中氮磷营养盐的水平在实验结束后有明皿下降,对于控制沉积物内源营养盐释放有重要的作用。因此,恢复以水生植物为丰的水生生态系统足重建富营养湖泊生态系统和控制湖泊内源负荷的重要措施。  相似文献   

13.
沉积物再悬浮-重金属释放机制研究进展   总被引:16,自引:0,他引:16  
俞慎  历红波 《生态环境》2010,19(7):1724-1731
水-沉积物界面重金属迁移和转化行为已成为水环境质量研究的热点。因自然、生物、人为活动等驱动的沉积物再悬浮使得沉积物颗粒吸附和结合的重金属可能通过吸附-解吸平衡和氧化还原反应而释放进入上覆水体。随着外在污染源输入逐步得到控制,沉积物再悬浮释放重金属将成为水体重要的内在污染源而对水环境质量和水生生物产生影响。本文综述了最近几年的相关研究文献,对沉积物再悬浮的动力来源及发生机制、再悬浮-重金属释放机制及主要影响因素进行了阐述,探讨了该领域未来可能的研究方向。相关研究发现,当干扰切应力大于沉积物的临界切应力值时,沉积物再悬浮发生,且再悬浮颗粒量随干扰切应力的增强而增大;再悬浮使还原态沉积物暴露于有氧环境,有机质和硫化物的氧化是沉积物结合态重金属释放的主要机理,而沉积物颗粒电性吸附的重金属则通过解吸进入水体;切应力大小、再悬浮水体理化性质、沉积物理化性质以及微生物活性等因素调控着沉积物吸附态或结合态重金属的释放。本文指出再悬浮沉积物释放重金属的去向(再分配机理)以及再悬浮-重金属释放的动力学过程、沉积物悬浮-重金属释放复合预测模型的建立、沉积物悬浮-释放重金属的生物可利用性及生物毒害评价将是本领域需要进一步研究的重点。  相似文献   

14.
耿楠  王沛芳  王超  祁凝  王智源 《生态环境》2014,(7):1193-1198
在浅水湖泊中,沉积物易受到水流的扰动释放出原本沉降于其中的氮营养盐。沉水植物一方面能够减少水动力的作用,一方面又能够吸收沉积物中的和已经释放到上覆水中的氮营养盐供其生长同时改善水质。因此,研究沉水植物对沉积物中氮营养盐释放的影响具有很重要的实际意义。借助自主开发的生态水槽,研究苦草(Vallisneria spiraslis L.)在动、静水条件下对沉积物氮的释放的影响。实验装置包括四组水槽,两组动水槽中的一组只铺沉积物,另一组在沉积物上种植苦草,两组静水槽也如此设置。在40 d的实验周期内,我们在实验始末采集沉积物样品,在每一个采样时间点(0、1、3、6、12、20、30、40 d)采集水样,并测定沉积物中总氮含量,原水样中的总氮含量以及过滤水样中的总氮、氨氮、硝氮和亚硝氮的含量。研究结果表明:没有苦草的实验组0~1 cm沉积物层总氮下降幅度较大,有苦草的实验组表面0~1 cm沉积物层氮含量较高。苦草从根系周围沉积物中吸收氮,1~4 cm沉积物层的吸收量多于4~8 cm沉积物层。各水槽上覆水中总氮含量在第1天就有较大的增加,从0.09 mg·L^-1分别升到0.60、0.50、0.379、0.36 mg·L^-1在水动力影响下的增加更显著,后缓慢上升。动水槽中进入到上覆水的氮中80%以上是以溶解态氮形式存在,静水槽中这个比例高达90%以上。苦草对溶解态和颗粒态氮的去除率最高可达27.6%和84.3%。3种氮形态中硝态氮的含量比重较大,在动水条件下,苦草对氨氮,硝氮和亚硝氮的去除率最高可达30.0%、25.0%和60.0%。但苦草对水中氮形态的比例的影响并不明显。以上结果说明水动力条件明显促进沉积物中氮的释放,沉水植物苦草通过保护表层沉积物,吸收下层沉积物中氮,去除进入上覆水中的氮,特别是颗粒态氮和溶解态中的亚硝态  相似文献   

15.
通过在北京市野生动物救护中心构建表流湿地与潜流湿地相结合的复合人工湿地处理富营养化水体,研究该复合人工湿地对总氮(TN)、总磷(TP)及水体浊度的去除效果。结果表明:人工湿地对TP的去除效果好于对TN的去除效果,经过人工湿地处理的富营养化水体,表流湿地、潜流湿地和复合人工湿地对TP的平均去除率可分别达42%、55%、60%,对TN的平均去除率分别为27%、30%、34%,对水体浊度的平均去除率分别达43%、55%、75%。复合人工湿地对TP、TN以及浊度的去除效果受水体温度和溶解氧(DO)的影响,通过相关性分析发现,TP、TN和浊度的去除量与水体中的DO水平之间存在显著的负相关性,而与水体温度有正相关性,在显著性水平为0.05的条件下,相关系数分别为-0.829、-0.767、-0.765和0.674、0.757、0.774。复合人工湿地对TP、TN及浊度的去除率高于表流湿地和潜流湿地,表明复合人工湿地具有优于表流湿地和潜流湿地的整体性功能,能有效提高人工湿地对TN、TP以及浊度的去除率。  相似文献   

16.
氨氮废水的厌氧氨氧化生物脱氮研究   总被引:1,自引:0,他引:1  
利用从厌氧污泥中筛选和驯化的厌氧氨氧化(Anammox)菌直接启动UASB反应器,通过缩短水力停留时间(HRT)提高系统运行负荷,探讨水力停留时间对模拟废水脱氮性能的影响。结果表明,(1)富含Anammox菌的颗粒污泥能够快速启动反应器(只需14d)。(2)连续91d的HRT测试期间,系统具有良好的脱氮性能,且随着HRT的缩短,系统的脱氮效率具有波动上升的特点。NH4+-N、NO2--N和TN(总氮)的平均去除率超过70.0%。(3)系统总氮容积负荷(TNLR)和总氮去除负荷(TNRR)最大值(以N计)分别为2.04kg·m-3·d-1和1.56kg·m-3·d-1。(4)系统能够比较好的遵循Anammox生物脱氮的理论途径:NH4+-N、NO2--N的去除速率与NO3--N的生成速率的比例为1?1.15?0.22,与其相应理论值(1?1.32?0.26)非常接近。  相似文献   

17.
对上海市内环高架一段路面的7场降雨径流进行监测,分析了径流中固体悬浮物和营养盐的变化特征,以期加深对城市高架公路径流污染物的认识和为高架公路径流净化工艺的选择提供理论支持。结果表明:溶解态氮、颗粒态磷是径流中TN和TP的主要输出形式;TP质量浓度变化与TSS基本一致,但TN质量浓度变化与TSS相关关系较弱;通过分析不同粒径固体悬浮物与污染物的相关性,发现〈45μm固体悬浮物是径流中营养盐吸附的重要载体,去除细小固体悬浮物是治理城市高架径流污染的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号