首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   20篇
  国内免费   82篇
综合类   127篇
基础理论   2篇
污染及防治   4篇
评价与监测   6篇
社会与环境   1篇
  2024年   1篇
  2023年   6篇
  2022年   5篇
  2021年   15篇
  2020年   8篇
  2019年   12篇
  2018年   6篇
  2017年   10篇
  2016年   9篇
  2015年   9篇
  2014年   12篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1992年   1篇
排序方式: 共有140条查询结果,搜索用时 28 毫秒
31.
粘土矿物比率对沙尘源区的指示   总被引:6,自引:0,他引:6  
为了探讨中国北方沙尘源区矿物组成特征并建立沙尘气溶胶的矿物示踪指标,在亚太地区气溶胶特征实验(ACE-Asia)期间对新疆阿克苏、甘肃敦煌、陕西榆林和内蒙古通辽沙尘气溶胶的矿物组成进行了研究.结果显示,中国主要沙尘源区沙尘气溶胶中高岭石与绿泥石的比率存在明显差异,西部沙尘源区(以阿克苏站点为代表)高岭石与绿泥石的比值较小(平均值为0.3),而北部沙尘源区(以榆林站点为代表)高岭石与绿泥石的比值相对较高(平均值为0.7).沉降区长武尘暴样品的粘土矿物比率和气团轨迹分析证实,在区域范围,高岭石与绿泥石的比值为较好的沙尘源区矿物示踪指标.而亚洲沙尘与撒哈拉沙尘的对比显示,高岭石与绿泥石的比值在全球范围有着沙尘源区指示的意义.  相似文献   
32.
唐山大气颗粒物中水溶性无机盐的观测研究   总被引:9,自引:9,他引:0  
为认知唐山大气颗粒物中典型二次污染化学成分水溶性无机盐的浓度水平、季节变化和粒径分布特征,于2010年9月~2011年8月使用惯性撞击式分级采样器对唐山大气颗粒物进行了分级采样,并用离子色谱分析了其中水溶性无机盐含量.结果表明,PM9(可视为可吸入颗粒物)和PM2.1(细粒子)中以3种水溶性无机盐SO24-、NO3-和NH4+为主,三者之和分别占PM9和PM2.1中水溶性无机盐总浓度的68%和77%;PM9和PM2.1中3种盐的浓度和在春、夏、秋、冬这4个季节分别为35.0、84.7、67.3、61.6μg.m-3和23.2、64.8、52.7、49.6μg.m-3,颗粒物中3种盐在细粒子中的赋存比例年均值分别为70%、75%和94%,夏季赋存于粗粒子中的比例显著高于其它季节.Ca2+和Mg2+全年均呈粗模态单峰分布.唐山大气颗粒物污染严重,控制燃煤、机动车尾气和生物质燃烧直排颗粒物的同时,要重点加强对气态污染物排放的控制,同时要控制地面扬尘和建筑灰尘.全面控制人为污染排放源,同时加强绿化和地面硬化、封闭式管理建筑工地,才有可能抑制住唐山市目前严重的大气污染.  相似文献   
33.
成都市区夏季大气污染物浓度时空变化特征分析   总被引:25,自引:8,他引:17  
为了解成都市区大气污染物浓度水平及其变化规律,统计分析了2013年6月1日—8月31日3个市区站点(十里店、梁家巷和草堂寺)SO2、NO2、O3、PM2.5、PM10和CO逐时观测资料.结果表明,观测期间O3污染严重,上述3个站点小时均值超标率分别达22%、37%和42%.大气颗粒物污染也较为严重,上述3个站点PM10日均浓度超标率分别为13%、8%和3%,而PM2.5日均值超标率分别高达34%、27%和26%.NO2和CO早晚的浓度高峰主要与机动车流量增加和混合层高度降低有关.由于紫外辐射影响,O3浓度在正午出现峰值.受机动车流量高峰和气象条件的影响,PM2.5和PM10最大值和最小值分别出现在上午和下午.通过对污染物"周末效应"的分析,发现周末O3、PM2.5和PM10的浓度显著高于工作日,SO2、NO2和CO反之.成都市区大气污染受局地排放和外源输送共同影响,其中PM10和NO2主要受局地源控制,而PM2.5、SO2和O3受外输送影响较大.  相似文献   
34.
西安一次霾重污染过程大气环境特征及气象条件影响分析   总被引:11,自引:1,他引:10  
利用西安区域8个气象站点的气象观测资料及西安市13个环境质量监测站点的空气污染物浓度监测资料,对2013年12月16—25日西安地区一次长时间重污染霾天气过程的污染特征及成因进行了分析.结果表明此次霾重污染天气过程主要是一次在不利气象条件下形成的高浓度颗粒物污染事件,其中有54.6%的霾属于干霾,其余属于湿霾.气压场偏弱,气压梯度力小,风速小,弱冷空气形成的下冷上暖的稳定性层结等天气形势有利于霾重污染的形成与维持;弱的降温与相对湿度增大叠加,有利于气溶胶吸湿增长而加重霾的强度.关中盆地特有的喇叭口地形通风不畅,造成外来输送与当地排放的大量污染物堆积,为此次长时间霾发生提供了增强条件.低的混合层厚度抑制了垂直方向上的对流输送,严重削弱了大气垂直扩散能力,造成了大气中各类污染物浓度的大量积聚,是造成此次霾重污染过程的重要原因之一.城市污染加重热岛效应、热岛效应反过来通过热岛环流改变城市污染物传播扩散规律并加重污染,二者相互作用、互为增强条件.  相似文献   
35.
利用2009年北京市大气颗粒物质量浓度和气溶胶光学特性的同步观测研究发现,北京市城区颗粒物污染严重.PM2.5、PM10年平均浓度分别为(65±14)、(117±31)μg·m-3,均超出国家2016年拟执行环境空气质量二级标准,PM2.5、PM10日均值超标率分别为35%、26%.细粒子PM2.5污染与可吸入颗粒物PM10污染呈显著性相关,相关系数R约为0.90(P<0.001),二者相关性伴随PM2.5在PM10中所占比重自春季到冬季逐渐增大而增强,年均PM2.5占PM10比重为61%.气溶胶光学厚度AOD(500 nm)与气溶胶波长指数(α)年均值分别为(0.55±0.10)、(1.12±0.08).PM2.5、PM10与AOD间全年及各季节均呈显著线性相关,相关系数R≥0.50;但其相关系数与相关函数存在着显著的季节差异,夏秋季节相关性显著高于春冬季节,且全年相关会掩盖较大的季节性系统差异.对PM2.5、PM10数据进行湿度订正,对AOD进行混合层高度订正,PM2.5、PM10与AOD之间的相关性得到一定提升,且更适合指数相关.  相似文献   
36.
利用腔衰减相移式NO2光谱仪(CAPS)和传统化学荧光法(CL)同时测量北京2012年8月21—29日大气NO2浓度变化.对比两种仪器的NO2浓度,两种仪器结果在白天光化学反应较强期间偏差较大,最高可达25%.结合O3以及NOy观测计算了臭氧生成效率(OPEx),结果显示CAPS仪器结果计算得出的OPEx比CL小40%.对比低浓度和高浓度O3时期,前者差异小于后者,说明准确的NO2浓度测量对OPEx的计算至关重要,在O3污染期间尤为重要,是影响臭氧敏感性控制指标的一个显著因素.  相似文献   
37.
衡水市作为"2+26"城市中典型的低GDP、高污染城市,其空气质量排名常年处于74个重点城市的后10位.自大气重污染成因与治理攻关项目工作开展以来,衡水市开展了大量污染成因研究及污染治理工作,已取得了较为明显的大气污染治理成效.从空气质量变化、排放源、污染物来源解析及气象条件与排放贡献等方面,梳理了衡水市大气污染成因研究及治理经验.结果表明:①衡水市的空气质量得到较大改善,PM10和PM2.5治理成效明显.2018年衡水市ρ(PM10)和ρ(PM2.5)年均值比2017年分别下降了25.12%和19.73%,比2013年分别下降了54.84%和51.22%,但O3污染形势逐渐严峻,以O3为首要污染物的天数由55 d(2013年)增至125 d(2018年).②相比于2016年,衡水市2017年SO2、NOx、CO、PM10、PM2.5、BC、OC、VOC的排放总量均大幅下降.③2013-2018年导致衡水市PM2.5下降的因素中,气象因素占8.0%,排放源因素占92.0%,说明衡水市通过减排措施改善空气质量的效果较为显著.④硝酸盐已经取代硫酸盐成为秋冬季颗粒物二次转化中最重要、占比最高的成分.研究显示,衡水市高ρ(PM2.5)主要以本地排放和临近地区输送为主,为有效控制衡水市PM2.5污染的发生与发展,应采取本地排放控制与"2+26"城市联防联控相结合的方案.   相似文献   
38.
烟雾箱模拟乙炔和NOx的大气光化学反应   总被引:3,自引:1,他引:2  
利用自制光化学烟雾箱进行了一系列表征实验并模拟了乙炔和氮氧化物NOx在室温(20±1)℃下的大气光化学反应.讨论了乙炔与NOx的协同作用对光化学反应产生O3的影响.实验得到了O3和NO2的壁损失分别为5.80×10-6 s-1和2.41×10-6 s-1,相对于模拟实验中的O3和NO2,该损失可以忽略.测得了单支40 W黑光灯的有效光强为0.64×10-3 s-1(以NO2的光解速率表示).经过净化空气的本底校正后,讨论了不同乙炔浓度、NOx浓度以及光照强度对体系产生O3的影响,计算了乙炔的增强反应活性值(incremental reactivity, IR),4组实验的IR最大值分别为1.76×10-2、2.68×10-2、2.04×10-2和2.84×10-2.并发现IR值与乙炔的初始浓度以及光照强度关系密切,与NOx初始浓度关系不大.  相似文献   
39.
冻雨是冬春季节常见的灾害性天气,在我国主要分布在南方山区。冻雨在到达地表前以过冷水形式存在,是一种特殊的降水类型,其化学特性鲜见报道。2015年12月—2016年3月在南岳衡山气象站(海拔1265.9 m)收集了38个冻雨样品,使用电感耦合等离子体质谱分析了其中25种金属元素的浓度,并运用正定矩阵因子法受体模型解析了其来源。结果表明:冻雨中25种金属元素的浓度变化范围达7个数量级(2×10−4—4×103 μg·L−1),且大部分元素的浓度随着冻雨温度和pH的降低而增加。26%的冻雨样本受东北气团的影响,地壳元素浓度较高;而来自西南气团的冻雨样本占38%,重金属污染较重;南部气团(36%)携带的元素浓度相对较低。与国内外其他高山站点观测结果相比,衡山冻雨中金属元素的浓度水平整体上高于雨水但低于云水。通过富集因子分析发现,冻雨中Sb、Se、Cd、As、Zn和Pb等重金属明显受到人为源的影响,呈严重富集特征。源解析结果表明燃煤对冻雨化学成分的贡献最大(占31%),二次源、扬尘、工业排放和生物质燃烧的贡献分别为30%、18%、15%和6%。本研究提供了第一手的冻雨化学观测数据,研究结果不仅有助于理解冻雨的形成过程,也为其生态环境风险评估提供了科学依据。  相似文献   
40.
天津市PM2.5-O3复合污染主要发生在夏秋季,本研究筛选出2017年夏季一次和秋季两次典型PM2.5-O3复合污染过程,系统分析污染物变化特征,探究天气形势和主要气象因子的影响.结果表明,3次污染过程PM2.5与O3呈现不同程度的正相关性(日均值相关系数达到0.34~0.78),O3与PM2.5中硫酸盐和有机碳日均浓度存在较为一致的变化趋势.与非复合污染日相比,复合污染日无机盐占PM2.5组分的比重增加,增长率为1.9%~7.3%;而碳组分占比减小.复合污染过程发生时,天津地区处于低压槽前或高压后部,近地面弱的偏南风辐合造成较差的大气扩散条件,导致大气污染物的累积.研究结果发现,夏季和秋季PM2.5-O3复合污染过程需要适宜的气象条件,温度阈值分别为25~35℃和20~30℃,相对湿度分别为40%~70%和55%~100%.夏秋季复合污染过程关键无机组分及其形成机制有所差异.夏季,日间O3等强氧化剂对SO2的气相氧化过程和夜间高湿条件(大约60%)下液相化学反应可能是主导的化学机制,硫酸盐增长率为8.2%.秋季高湿环境(≥80%)不仅促进SO2向硫酸盐转化,秋季第一次复合污染过程硫酸盐增长4.7%,也促进夜间N2O5水解反应等,秋季第二次复合污染过程硝酸盐增长6.0%,两种机制成为秋季复合日PM2.5显著增长的关键机制.本研究揭示了驱动天津市PM2.5-O3复合污染过程发生的适宜气象条件、PM2.5关键化学组分及其化学过程,为复合污染的成因及协同控制提供了参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号