首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

2.
典型石化企业排放空气质量影响模拟研究   总被引:2,自引:2,他引:0  
基于惠州市大亚湾区2017年大气污染源排放清单,利用WRF-CMAQ模型系统量化评估了大亚湾区某典型石化企业在关停和增产排放情景下对周边空气质量的影响.清单结果显示该企业2017年SO2、NOx、PM10、PM2.5、CO和VOCs的排放量分别为212 、1744 、455 、359 、1458 和6446 t,在严格落实等量替代及减排措施后,该石化企业虽然产能翻倍,但VOCs排放量同比2017年显著减少了30%,其它污染物排放量增加了6%~19%.模拟结果显示2017年该石化企业排放对大亚湾区NO2、PM10、PM2.5和O3的浓度贡献分别为0.91、0.64、0.54和-0.08 μg·m-3,完全关闭该企业排放后对周边站点NO2改善效果最大(可使邻近管委会子站NO2浓度下降1.24 μg·m-3,下降百分比为5.10%),但由于NO的滴定效应,该企业NOx减排对周边管委会子站和霞涌子站的O3浓度均有轻微负贡献;该石化企业的增产改造对周边O3浓度降低影响明显,周边站点中O3浓度最高可下降2.45 μg·m-3(下降幅度为1.72%),大亚湾区O3浓度整体也可下降1.45 μg·m-3.此外,受秋冬季不利扩散条件以及主导上风向污染传输影响,该企业在1月和10月对管委会子站NO2、PM10和PM2.5的浓度贡献较大,由于冬季低温导致光化学反应自由基活性降低,该企业在1月对管委会子站O3浓度负贡献显著.  相似文献   

3.
王松伟  汤克勤  张皓然  刘弯弯  白露  李楠 《环境科学》2023,44(10):5443-5455
碳排放达峰和空气质量达标是当前大气环境研究的热点问题.利用排放因子法建立2010~2019年江苏省城市级温室气体排放清单,进一步结合温室气体-大气污染物协同关系分析和WRF-Chem空气质量模型模拟,量化不同碳减排情景下空气质量改善的协同增益.结果表明,2010~2019年江苏省CO2年均排放量为701.74~897.47 Mt,其中苏州、徐州和南京排放量最高(91.19~182.12 Mt ·a-1),扬州、宿迁和连云港排放量最低(13.19~32.54 Mt ·a-1),大部分城市CO2排放呈持续上升趋势.能源活动为CO2排放的主要来源,贡献率占比近90%,工业生产过程贡献率约10%.依据减排侧重点的不同设计3类CO2减排情景,分别为全部门协同减排、优先能源减排和优先工业减排,每类减排情景包含不同的CO2减排力度(10%、20%和40%).情景模拟结果指出,以2017为基准年,全部门协同、优先能源和优先工业减排中PM2.5年均浓度下降幅度分别为6.7~21.1、3.1~12.0和3.4~14.3 μg ·m-3.全部门协同减排对PM2.5污染改善最为显著,在全部门减排情景为40%下,除徐州和宿迁外其它城市PM2.5年均浓度值均能达到国家Ⅱ级标准(35 μg ·m-3).PM10、SO2、NO2和CO的变化响应与PM2.5类似,但O3污染在优先能源和优先工业情景下呈现出不同程度的上升趋势.  相似文献   

4.
对大气污染物进行时空分布特征研究是开展大气污染防治的关键技术支撑.本研究基于广州市52个城市环境空气质量监测站点数据,采用系统聚类法、经验正交函数 (EOF)等方法分析了2016—2020年广州市PM2.5浓度的时空分布特征.结果表明:①2016—2020年广州市PM2.5污染改善显著,PM2.5年均浓度从35.9 μg·m-3下降至23.0 μg·m-3,达标比例由96.2%上升至100%;PM2.5干季平均浓度为湿季的1.54倍, 国控点超标天数为湿季的10.5倍;PM2.5浓度日变化曲线峰谷值浓度差由7.5 μg·m-3下降至3.9 μg·m-3,日变化幅度趋于平缓.②广州市PM2.5浓度最高值区主要分布在东西两侧,高值区域范围逐年减小,全市PM2.5浓度分布趋于均匀;采用系统聚类法可将广州市PM2.5分成北部、中北部、 南部、中南部4个污染区,其中,北部区PM2.5浓度下降率仅为其他污染区的1/2,推测其PM2.5浓度下降可能更多地由区域背景浓度的下降贡献;EOF分解前3模态累积方差贡献率达93%,分别可表征PM2.5总体污染程度、在南北方向上的区域输送特征及由外围区域向中心城区聚集的 污染特征.  相似文献   

5.
气候变暖和空气污染是我国当前面临的主要环境问题.综合使用中国碳核算数据库、能源经济模型和空气质量模型,研究我国湖南省工业领域潜在碳达峰路径及其空气质量协同改善增益.基于中国碳核算数据库和相关工业/能源统计年鉴分析指出,湖南省2019年CO2排放总量为310.6 Mt,其中工业领域排放占比超70%,主要来自于电力、蒸汽、热力的生产和供应业,非金属矿物制品业及黑色金属的冶炼和压延业等行业.综合考虑未来各工业行业经济增长速率、能源技术进步程度和能源结构优化调整等因素,使用LEAP能源经济模型设置并分析了3种潜在的工业碳达峰情景,包括趋势照常情景(2030年达峰)、中度减排情景(2028年达峰)和强化减排情景(2025年达峰).进一步结合人为源大气污染物排放清单和区域空气质量模型WRF-Chem,以排放行业-部门的同源对应关系为桥梁,模拟分析不同碳达峰路径下空气质量改善响应.结果指出,在3种碳达峰情景中,主要大气污染物浓度均有所降低,长株潭地区尤为显著;强化减排情景力度最大,中度减排情景次之,趋势照常情景相对最弱.制造业减污降碳的协同效果最佳,在不同情景实现碳达峰时,可分别减少ρ(PM2.5)和ρ(PM10)年均值0.6~1.8 μg·m-3和1.8~8.9 μg·m-3.研究可为国家和区域的减污降碳协同实践提供参考和决策依据.  相似文献   

6.
陈菁  彭金龙  徐彦森 《环境科学》2021,42(9):4071-4082
细颗粒物(PM2.5)和臭氧(O3)是我国的主要大气污染物,严重危害人群健康.北京市自2013年以来大力开展大气污染治理工作,现已取得显著成效.通过分析2014~2020年北京市34个大气环境监测站的PM2.5和O3浓度变化特征并评估大气污染防治的健康效应,对推进大气污染防治具有重要意义.结果表明,2014年北京市PM2.5年均值和4~9月平均O3日最大小时(O3_max)值分别为92.0 μg·m-3和81.9 nmol·mol-1.2014~2020年PM2.5平均每年降低7.5 μg·m-3,但是O3_max持续偏高.在季节尺度,冬季的12月和1月PM2.5浓度最高,夏季的8月浓度最低.相反地,O3_max在每年6月浓度最高.PM2.5浓度日变化规律为,夜间22:00至次日00:00最高,14:00~16:00最低.而O3浓度在07:00最低,随后逐步升高并在午后达到最高.在空间分布上,PM2.5在2014和2019年都呈现南高北低的趋势,O3_max在全市范围内均较高,仅在道路区域偏低.大气污染对人群健康影响的评估结果表明,2014年北京市与PM2.5相关的心血管和呼吸道疾病超额死亡人数分别为1580人和821人,与O3相关的呼吸道疾病超额死亡人数为2180人.2019年与PM2.5相关的超额死亡人数仅为2014年的50%,而与O3相关的超额死亡人数与2014年持平.北京市细颗粒物治理成效显著,但是O3污染问题凸显,O3已经成为危害北京市居民健康的首要大气污染物.未来需要加强PM2.5和O3协同治理.  相似文献   

7.
为了评估中国大气环境治理带来的健康效益,确定健康风险评价的主要驱动因素,本文使用结合人群活动因子的综合暴露响应模型,对中国东部和中部地区2013~2017年可归因于PM2.5的健康经济效益进行了估算,并量化了人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的影响贡献.结果表明,2013~2017年研究区域内PM2.5人口加权浓度下降了28.73%,PM2.5年均暴露浓度在35 μg·m-3及以下的人口比例从11.23%增加到27.91%.PM2.5浓度下降使得2017年归因死亡数下降了14.43%,可避免经济损失为5588.41亿元.当PM2.5暴露浓度达到国家二级标准(35 μg·m-3)、一级标准(15 μg·m-3)和世卫组织建议标准(10 μg·m-3)时,归因死亡人数较基准年(2017年)将减少8.22%、55.05%和79.36%,避免经济损失3190.85、21374.38和30812.97亿元.人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的贡献分别为-2.69%、-12.38%、1.66%和14.57%,其中污染物浓度降低是减轻健康负担的主导因素.中国的大气污染治理取得了显著成效,但在高PM2.5浓度和高人口密度的地区,大气污染导致的健康负担仍然很重,需要实施更加严格的空气污染控制政策.  相似文献   

8.
在近年来大力控制大气污染的背景下,通过历史观测数据分析污染物的时空变化特征,有助于总结以往控制的成效,并为制定下一阶段措施提供科学依据.本研究基于北京市大气环境质量监测站点2013—2019年数据,分析了6种常规大气污染物(PM2.5、NO2、O3、PM10、SO2、CO)的时间变化趋势,并构建了2013和2019年PM2.5、NO2和O3 3种主要污染物的土地利用回归模型(Land use regression model, LUR),对它们详细的空间分布及变化特征进行了分析.结果表明,污染物浓度在过去7年中发生了重大变化,除O3增长,其余5种污染物下降明显.不同城区间的差异在迅速缩小,污染物浓度在空间上趋于均匀.PM2.5呈明显的南高北低,城区NO2浓度显著高于郊区和山区,O3在主城区尤其是道路附近浓度较低.约50%的区域PM2.5下降30 μg·m-3以上,约40%的区域NO2下降幅度为5~15 μg·m-3,道路附近O3升幅在20 μg·m-3以内.研究结果揭示出北京市及其周边地区大气污染治理近年来取得了卓有成效的成绩,但同时也面临着O3浓度升高的新挑战.  相似文献   

9.
北京南部城区PM2.5中碳质组分特征   总被引:5,自引:3,他引:2  
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、0.9~74.5和0.0~5.5 μg ·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg ·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg ·m-3] > 春季[(12.7±9.6)μg ·m-3] > 秋季[(11.8±6.2)μg ·m-3] > 夏季[(6.5±2.1)μg ·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5 μg ·m-3.二次有机碳(SOC)年均质量浓度为(5.4±5.8)μg ·m-3,四季贡献比例范围为45.7%~52.3%,年均贡献为48.2%,凸显了二次形成的重要贡献.随污染加重,尽管OC和EC贡献比例均降低,但浓度水平却成倍升高,OC和EC浓度在严重污染天分别是空气质量为优天的6.3和3.2倍.与非供暖时段相比,供暖时段PM2.5、OC和SOC浓度分别增加了14.4%、47.9%和72.1%,体现了OC对供暖季PM2.5污染的重要贡献.PSCF分析表明,位于北京西南的山西省和河南省部分区域是PM2.5和OC的主要潜在源区,且PM2.5潜在源区更为集中;EC的PSCF高值(>0.7)区域较少,主要位于北京南部,如山东省和河南省部分地区,且北京市及周边地区贡献明显.  相似文献   

10.
李勇  廖琴  赵秀阁  白云  陶燕 《环境科学》2021,42(4):1688-1695
开展全国范围归因于PM2.5污染的健康负担和经济损失研究,对于污染防控政策至关重要.首先利用空气质量模型(WRF-Chem)模拟结果,分析2016年PM2.5的时空分布和暴露水平;同时结合环境健康风险及环境价值评估方法,评估PM2.5污染引起的健康负担和经济损失;最后基于情景分析方法,预估实现具体PM2.5控制目标的健康经济效益.结果表明,2016年,我国PM2.5污染主要集中在京津冀及周边地区、长三角地区、四川盆地以及西北沙漠地区,且71.49%的人口暴露在PM2.5浓度高于35 μg·m-3的环境空气中;PM2.5污染造成约106.04万人过早死亡,约占总死亡人数的10.9%,其中冠心病和中风约占80%;PM2.5污染造成健康经济损失7059.31亿元,约占国内生产总值(GDP)的0.95%.PM2.5污染造成的健康负担和经济损失存在显著空间差异,主要分布在PM2.5浓度和人口密度高的中东部地区;情景分析表明,我国所有地区PM2.5浓度降至35 μg·m-3,只能避免17.11%的健康经济损失,而降至10 μg·m-3可以带来80.47%的健康经济效益.建议环境管理者进一步加强控制力度,更好地保障居民的健康和财富利益,尤其是心脑血管疾病患者等敏感人群以及归因死亡率高的地区.  相似文献   

11.
自北京奥运会以来,CMAQ模式作为北京多模式预报系统的一个成员在北京空气质量预报中得到广泛应用.为了更好地发展模式系统预报性能,本文针对北京开展完整年份PM2.5模拟预报效果评估,结合我国环境空气质量标准,引入IAQI预报准确率、等级预报准确率以及预报综合评分法等多项指标,研究评价不同代际不同模式分辨率CMAQ模式系统预报效果差异.研究结果表明,①新研发的CMAQ模式系统预报效果整体优于原有业务预报模式系统,综合考虑预报级别准确性和预报空气质量分指数精确度的得分评估结果显示,新一代CMAQ模式3 km空间分辨率(BJ03)4 d预报时效内得分为73.1~80.5分,高于9 km空间分辨率(BJ09)和原有CMAQ模式5 km空间分辨率(CN05)和15 km空间分辨率(CN15)的预报结果综合得分.②BJ03区域的预报效果优于BJ09区域,BJ03区域预报的PM2.5-IAQI准确率达42%,空气质量等级准确率达68%~79%,预报综合评价得分最高80.5分;而9 km分辨率CMAQ模式预报的PM2.5-IAQI准确率为30%,等级准确率为53%~70%,预报综合评价得分最高为75.3分.③模式PM2.5-IAQI预报准确率整体随预报时长增加而下降,原有业务系统CMAQ模式的CN05、CN15区域IAQI预报准确率由24 h内的27%下降至7 d预报时长的22%左右;BJ03区域IAQI预报准确率由24 h内的42%下降到4 d预报时长的29%,与之对应的BJ09区域IAQI预报准确率由24 h内的30%下降到4 d预报时长25%,至9 d预报时长,IAQI预报准确率进一步下降到22%,即达到原有业务预报系统7 d IAQI预报准确率.④模式秋冬季的PM2.5预报结果整体较实况偏高,BJ03区域秋冬季较实况偏高9.2 μg·m-3,而BJ09、CN05和CN15区域较实况偏高25.6~37.9 μg·m-3.  相似文献   

12.
为对台州市市区环境空气中PM2.5的主要来源进行全面分析,运用CMAQ(空气质量模型)模型中的ISAM源追踪算法,计算了台州市本地各类污染源及外来源对PM2.5的贡献,同时基于CMB模型的初步源解析结果,利用CMAQ模型解析二次前体物排放源的贡献,得到CMB-CMAQ联用模型的源解析结果,综合分析CMAQ模型和CMB-CMAQ联用模型解析结果最终获得台州市市区空气中PM2.5的贡献源数据.结果表明:①CMAQ模型和CMB-CMAQ联用模型解析结果均表明,台州市市区PM2.5本地源中首要贡献源为工业源,两个模型中工业源贡献率分别为20.13%和26.94%,其次为扬尘源(贡献率分别为16.98%、19.37%)和道路移动源(贡献率分别为16.44%、18.14%).②CMB-CMAQ联用模型解析结果中工业源、扬尘源和道路移动源的贡献率均高于CMAQ模型解析结果,而外来源和电力源的贡献率均低于CMAQ模型解析结果.③CMAQ模型和CMB-CMAQ联用模型综合分析分配结果表明,外来源、工业源、扬尘源、道路移动源是对区域中PM2.5贡献较大的4个污染源,贡献率分别为26.10%、22.38%、16.09%、15.07%.研究显示,台州市市区环境空气中PM2.5污染呈以工业源、扬尘源为主,道路移动源污染突出的复合型污染特征,加强这三类源的排放管理对于台州市市区PM2.5污染防治具有重要意义.   相似文献   

13.
为探讨空气中ρ(PM2.5)的空间集聚特征和气候、大气成分变量对空气中ρ(PM2.5)的影响,利用首批纳入PM2.5监测的74个城市的ρ(PM2.5)数据计算Moran's I指数,并选取其中38个典型城市进行计量分析.在基于引力模型的空间权重矩阵基础上,构建面板数据SDM(空间面板杜宾模型).结果表明:ρ(PM10)、ρ(SO2)、ρ(CO)、ρ(O3)、RH(relative humidity,相对湿度)与城市ρ(PM2.5)呈正相关,而T(temperature,温度)和WS(wind speed,风速)与城市ρ(PM2.5)呈负相关;ρ(PM10)、ρ(CO)、RH是位于前3位影响城市ρ(PM2.5)的关键性因素,其总效应分别为0.720 1、0.241 7、0.133 9.地理上邻近城市ρ(PM2.5)具有明显的外部空间溢出效应,即邻近城市ρ(PM2.5)每增加10百分点,将导致该地区ρ(PM2.5)增长6.12百分点.300 km左右是保证PM2.5区域"联防联控"最佳效果的最大门槛距离,超过该门槛距离,区域"联防联控"的力度和效果会随着距离的增加而逐渐减弱;当门槛距离大于500 km时,ρ(PM2.5)的空间自相关性不显著.气候变量中,RH和ρ(PM2.5)呈同方向变化,而T、WS与ρ(PM2.5)呈反方向变化.研究显示,关注单一地区或单一因素(气候或大气成分)均不能有效控制PM2.5污染,在保持经济稳定增长的前提下,各地治理PM2.5应从调整产业结构、优化能源结构、完善防控机制等多个维度共同推进,促使经济增长方式早日从"粗放型"向"集约型"转变.   相似文献   

14.
广州市氮氧化物的数值模拟及暴露影响评价   总被引:1,自引:1,他引:0  
主要介绍了大气暴露风险评价ADMER模式的模块组成及其主要功能,并利用该模式对广州地区常规的氮氧化物进行了暴露风险评价研究.利用中尺度气象模式模拟的5km气象场数据和收集整理的年平均污染排放源资料进行了大气污染扩散模拟计算.结果表明,无论是氮氧化物的浓度值还是其时空变化趋势,ADMER模式模拟的结果与实际观测均较一致,相关系数达0.76.氮氧化物的浓度高值出现在冬春季节,夏季的浓度相对较低,这主要是受气象场条件的影响.空间场上,氮氧化物的高值区位于广州地区的西南和中部,与工业大点源以及地面源排放的分布一致,而广州地区东北部氮氧化物的浓度值相对较低.在浓度评估的基础上,对暴露人口也进行了估算.由于广州是广东省的主要人口密集区,所以,定量化暴露人口对于进一步开展污染控制减排策略有一定的指示意义.  相似文献   

15.
采用多模式最优集成方法(OCF),对PANDA项目中国和欧洲7个空气质量模式的PM_(2.5)预报结果进行集成释用.2016年6月—2017年5月对上海逐日预报试验结果表明:和最优单模式预报结果相比,OCF预报的PM_(2.5)日均质量浓度的均方根误差降低1.9μg·m-3,相关系数提高0.04,日均质量浓度的精度评分TI提高了2.4,污染TS评分提高了0.28,污染空报率降低了20%,显著提高了PM_(2.5)污染等级预报、趋势预报和精度预报的技巧.对长三角合肥、南京、苏州、杭州、宁波5个城市的预报试验也得到类似的结果,为城市空气质量预报提供了新的方法和思路.但OCF对客观预报的改进幅度在夏季不如冬季显著,在降雨日相对较低.  相似文献   

16.
近10年海南岛大气NO2的时空变化及污染物来源解析   总被引:4,自引:0,他引:4  
利用OMI卫星反演的NO2柱浓度数据,分析了近10年海南岛对流层NO2柱浓度(Tro NO2)和总NO2柱浓度(Tot NO2)的时空变化,同时结合地面风向、SO2排放资料,以及HYSPLIT模式等探究其大气污染物来源.结果表明,海南岛地区大气NO2呈北半部高于南半部、中部山区低于四周沿海的分布特征,其季节变化表现为冬季高、夏季低的特点,其中夏季浓度偏低和雨水的冲刷作用有关,而冬季浓度偏高与珠江三角洲地区的外源输送作用有密切联系.近10年海南岛大气NO2冬夏季有相反的变化趋势,冬季逐年下降,夏季则有弱的上升趋势.其原因可能是夏季大气污染物以本地排放为主,冬季外源输送起主要贡献作用.海口市Tro NO2与珠江三角洲地区的有利风向日数相关系数为0.84,通过了99%的信度检验.后向轨迹分析表明,2013年12月影响海口市的3条气流移动路径,均不同程度的经过珠江三角洲地区,进一步表明海南岛冬季大气污染物主要以珠江三角洲地区的外源输送为主.  相似文献   

17.
南昌市大气颗粒物污染特征及PM2.5来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气.   相似文献   

18.
Source apportionment study of PM10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM10.  相似文献   

19.
长春市大气SO2、O3和NOx的变化特征及来源   总被引:2,自引:0,他引:2  
为研究长春市采暖期大气污染物的污染水平及其随时间的变化特征,于2012年1—6月通过在线监测仪获取了大气中ρ(SO2)、ρ(O3)和ρ(NOx),利用HYSPLIT(混合型单粒子拉格朗日综合轨迹模式)后向轨迹模型结合地面气象资料,初步分析了该市大气污染物的可能来源及传输过程. 结果表明:观测期间ρ(SO2)和ρ(NOx)的日均值分别为(25.0±21.6)和(54.4±34.0)μg/m3,ρ(O3)最大8 h平均值为(85.0±26.2)μg/m3,ρ(SO2)、ρ(NOx)和ρ(O3)的变化范围分别为2.3~131.0、17.6~183.7和31.0~173.3 μg/m3;其中ρ(O3)日均值超过GB 3095—2012《环境空气质量标准》二级标准限值的时间为2 d,ρ(SO2)和ρ(NOx)均未超过二级标准限值,但ρ(SO2)日均值在采暖期超过GB 3095—2012一级标准限值的时间为23 d,占采暖期的24%. 采暖期ρ(SO2)日变化为双峰型,峰值出现在06:00和20:00左右,而在非采暖期表现为单峰型,峰值出现在08:00左右;ρ(O3)表现为单峰型,峰值出现在13:00─15:00;ρ(NOx)在采暖期表现为双峰型,而在非采暖期表现为单峰型. 对观测期间72 h内HYSPLIT后向轨迹模拟结果和气象数据的分析表明,长春市大气污染主要受本地源的影响,偏西气流易对污染物造成积累,而偏东气流有利于污染物扩散.   相似文献   

20.
成都市冬季大气颗粒物组成特征及来源变化趋势   总被引:7,自引:0,他引:7  
年冬季分别在成都市8个环境受体采样点采集PM10、PM2.5样品,同时采集颗粒物源类样品,分析上述样品质量浓度及多种无机元素、水溶性离子和碳组分的含量,以对这3 a冬季大气颗粒物浓度、特征组分、来源及变化趋势进行分析. 使用CMB-iteration模型对成都市中心城区的PM10、PM2.5进行来源解析. 结果表明: 成都市冬季ρ(PM10)在工业区最高,PM2.5污染呈现区域性特征;冬季PM10的主要来源有扬尘、二次硫酸盐、煤烟尘、二次硝酸盐和机动车尾气尘,上述5类源在2010─2012年的分担率分别为24%~29%、17%~22%、13%~16%、6%~12%、6%~11%;对PM2.5有重要贡献的源类有二次硫酸盐、扬尘、煤烟尘、二次硝酸盐和机动车尾气尘,这5类源在2010─2012年的分担率范围分别为25%~27%、19%~22%、12%~15%、11%~13%、8%~11%. 二次粒子、扬尘等是成都市大气颗粒物的主要污染源,其中扬尘、建筑水泥尘等以粗粒子为主的源类浓度贡献呈逐年下降趋势,而二次粒子等以细粒子为主的源类浓度贡献则逐年上升,成都市冬季大气细颗粒物污染加重.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号