首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据2015—2020年中国近1500个监测站点PM2.5小时浓度数据,利用空间自相关分析、回归分析及小波分析方法,探索了中国PM2.5浓度与异常的时空演化及其与ENSO(El Ni?o-Southern Oscillation,厄尔尼诺-南方涛动)之间的关系.结果表明,PM2.5污染具有显著空间自相关性,空间上存在明显集聚特征. PM2.5浓度较高的站点通常位于华北地区,其次是华中、华东北部,而PM2.5浓度较低的站点通常位于青藏、华南南部和西南南部地区,特别是华南沿海区域.两个ENSO期间,夏季,全国各区域厄尔尼诺年(2015年和2018年)PM2.5平均浓度高于拉尼娜年(2017年和2020年);冬季,北方大部分区域,除ENSO II内蒙古和青藏地区以外,厄尔尼诺年PM2.5平均浓度也高于拉尼娜年,但华南和西南地区的结果相反,表明ENSO对我国冬季南北方PM2.5污染的影响可能相反.回归分析表明,华北、华东...  相似文献   

2.
近年来,我国臭氧(O3)浓度呈升高趋势,成为仅次于PM2.5影响空气质量的重要因素.为掌握长三角地区蓝天保卫战实施期间O3时空变化特征和人群健康影响,采用莫兰指数和冷热点空间统计方法分析了长三角地区2017~2020年210个监测站点O3浓度时空特征,并利用健康风险和环境价值评价法评估了长三角区域人群O3暴露水平变化的健康收益.结果表明,2017~2020年,长三角地区O3年均值和暖季均值的四分位数范围(IQR)呈现从高浓度向低浓度位移的趋势.暖季和冷季O3浓度均值均呈现北高南低的空间分布态势.暖季O3浓度均值在长三角北部和中部腹地城市出现高浓度O3集聚的特征.区域O3年均暴露浓度超过160μg·m-3及以上的人口比例由2017年的72.3%降低至2020年的34.8%.三省一市人口加权年均O3暴露浓度总体呈现下降趋势,但长三...  相似文献   

3.
基于环境空气质量站点监测数据及卫星遥感资料,研究了2015~2020年济南市近地面臭氧(O3)污染的时空分布特征、变化趋势和前体物生成敏感性.结果表明,2015~2020年济南市O3浓度呈上升趋势,全年O3日最大8 h滑动平均值(MDA8)的第90百分位数(即年评价浓度)和4~9月MDA8 O3浓度年均值分别以4.8μg·(m3·a)-1和3.8μg·(m3·a)-1的速率增长;各监测站点间O3浓度水平差异逐渐缩小,且O3浓度高值范围进一步扩大,济南市有16.1%和22.6%的监测点年评价值和4~9月MDA8 O3出现了显著的正趋势(P<0.05),这些监测站点主要位于市区和靠近市区的郊区.卫星遥感监测数据显示2015~2020年4~9月济南市NO2对流层柱浓度下降20.6%,年下降速率为0.3×1015  相似文献   

4.
近地面O3污染已经成为我国最严重的环境问题之一,特别是在地形相对闭塞的盆地区域更加突出,而盆地地形区域O3的时空演化、潜在源区及驱动因素尚未被完全揭示.因此,以典型盆地地形区—四川盆地为研究区,基于长时间尺度(2015—2021年)的O3浓度监测数据,采用后向轨迹、时空地理加权回归等模型探讨O3的时空变化特征、传输路径、潜在源区以及驱动因素的空间分布特征.结果表明:(1)时间分布上,2015—2021年四川盆地O3-8 h浓度第90百分位数为(143±7)μg/m3,夏季O3-8 h浓度高于其他季节,O3-8 h浓度存在明显的“周末效应”和昼夜差异.(2)空间格局上,四川盆地O3-8 h浓度第90百分位数总体呈西高东低的分布特征,西部平原地带是核心污染区域.(3)2015—2021年影响成都市的气流轨迹中短距离输送轨迹占比为74.24%,长距离输送轨迹占比平均值为25.76%. 2015—2...  相似文献   

5.
利用2015—2019年韶关市3个地面环境空气质量站逐时臭氧(O3)观测资料、同期的气象资料和2017—2019年广东南岭站逐时O3观测资料及同期气象资料,采用Kolmogorov-Zurbenko (KZ)滤波、多元回归和后向轨迹潜在来源贡献分析等统计方法,分析了韶关市O3浓度不同尺度变化特征与气象要素的关系.结果表明:(1)不同时间段气象因素对韶关市盆地区域O3浓度变化的影响不同:2015年1月—2016年6月及2018年6月—2019年6月,气象因素有利于降低近地面O3浓度;而2016年6月—2018年6月及2019年下半年,气象因素有利于增加地面O3浓度.2018年6月前,气象因素影响导致近地面O3浓度的增加或降低幅度范围在2μg·m-3;2018年6月后,气象因素影响造成地面O3浓度的增加或降低幅度范围上升到4μg·m-3,说明韶关市O3...  相似文献   

6.
为了探明近年来中国典型城市群(京津冀城市群、长三角城市群和珠三角城市群)臭氧(O3)污染的发生规律,利用2005—2020年OMI-MLS (臭氧监测仪-微波临边探测器)对流层O3柱总量探测数据以及2015—2020年地面O3浓度监测数据分析我国三大城市群O3的时空分布特征及其演变趋势,结果表明:①对流层O3柱总量月峰值和年均值均呈京津冀城市群>长三角城市群>珠三角城市群的特征,京津冀和长三角城市群对流层O3柱总量均在夏季〔分别为50.0和44.4 DU (dobson unit)〕最高,而珠三角城市群在春季(42.2 DU)最高. ②三大城市群对流层O3柱总量在空间分布上具有不同的特征,京津冀城市群对流层O3柱总量呈东南高于西北的特征,长三角城市群对流层O3柱总量随纬度升高而增大,珠三角城市群对流层O3柱总量南北局地差异较小;海拔对对流层O3柱总量的空间分布有一定影响,海拔越高,对流层O3柱总量越低. ③京津冀、长三角和珠三角城市群对流层O3柱总量均呈逐年显著升高的趋势,年均增长量分别为0.25、0.28和0.27 DU,其中,京津冀城市群在对流层O3柱总量较低的秋冬季年均增长(0.29 DU)最快,而长三角和珠三角城市群分别在对流层O3柱总量最高的夏季和春季增长最快,均为0.39 DU. ④卫星探测的对流层O3柱总量与地面监测的O3日最大8 h滑动平均浓度(简称“O3-8 h浓度”)在京津冀和长三角城市群相关性明显,而在珠三角城市群相关性较差. ⑤O3-8 h浓度呈京津冀城市群>长三角城市群>珠三角城市群的特征,其中,京津冀城市群O3-8 h浓度在2018年(110.9 μg/m3)最高,空间上由2016年之前的北高南低转变为南高北低,多数城市O3污染较重且达标率较低;长三角城市群2017年O3-8 h浓度(106.7 μg/m3)最高,2016年起O3-8 h高浓度中心由东北逐渐向西部内陆迁移,沿海城市达标率增加;珠三角城市群O3污染程度最轻,达标城市较多,但O3-8 h浓度呈逐年上升趋势,并在2019年达最高值(100.4 μg/m3),且中心城市上升速率远大于外围城市. 研究显示,中国三大城市群对流层O3柱总量和O3-8 h浓度的时空分布特征存在显著差异,造成差异的因素也不同.   相似文献   

7.
为深入了解保定市空气质量状况,揭示PM2.5与臭氧(O3)的变化特征及相互关系,利用小波分析法对保定市2013—2020年每年4—9月AQI、PM2.5、O3-8 h (O3日最大8 h滑动平均值)和NO2浓度的逐日数据进行分析. 结果表明:①2013—2018年保定市O3污染呈逐年加重趋势,最大日浓度达到347 μg/m3;随着治理措施的颁布与实施,PM2.5超标天数由2013年的97 d减至2020年的1 d,PM2.5超标情况逐年改善. ②O3超标天数由2013年的3 d增至2018年的95 d,2020年减至61 d;O3超标天数占PM2.5和O3超标总天数的比例从2013年的3%增至2020年的98%,说明O3逐渐成为影响保定市空气质量的主要污染物. ③2013年保定市O3-8 h浓度低于“2+26”城市均值,2014—2020年O3-8 h浓度高于或接近“2+26”城市均值,说明近年来保定市O3-8 h浓度的升幅已超过“2+26”城市的平均水平. ④小波分析发现,2013—2020年(除2015年和2018年外)AQI与PM2.5污染序列的第1主周期相近,从2017年开始,AQI与O3-8 h污染序列的第1主周期和第2主周期均一致,说明近年来保定市空气污染逐渐由PM2.5污染转为PM2.5与O3复合污染. ⑤在同一时间尺度范围内,PM2.5与O3-8 h污染序列的震荡频率基本一致,说明二者存在较明显的正相关关系;2015—2019年,NO2与O3-8 h污染序列的震荡频率趋于一致,说明保定市O3-8 h浓度受前体物NO2影响较大,2020年震荡频率有较大差异,这可能与新冠肺炎疫情复工后生产规模尚未完全恢复,致使NO2、PM2.5等污染物排放强度同比降低有关. 因此,减少NO2排放,协同控制多污染物是实现保定市空气质量改善的主要途径.   相似文献   

8.
基于山西省2018—2020年国控点位O3监测数据分析了全省O3污染特征,分别以晋城市和太原市为典型城市,分析了温度、相对湿度和风向风速等气象因子以及前体物(NOx和VOCs)对O3的影响,并采用CAMx模式开展2020年6—8月山西省O3区域和行业来源解析. 结果表明:① 山西省O3超标天数中以O3轻度污染为主,且中度及以上污染呈增加趋势,O3污染集中出现在5—9月,且呈现较强的地域性特征,O3浓度日变化呈单峰型特征. ② ρ(O3-1 h)(臭氧1 h平均浓度)与气温、风速均呈正相关,与相对湿度呈负相关,高温、低湿有利于O3的生成. 风速与ρ(O3-1 h)呈分段式线性关系,ρ(O3-1 h)随着风速增大而升高,当风速大于某一阈值时,ρ(O3-1 h)随风速的增加而下降. 以典型城市晋城市为例,当温度在25 ℃以上、相对湿度在30%~60%之间、风速为4~5 m/s,且风向为南风和东南风时更容易出现ρ(O3-1 h)高值. ③ 山西省2020年6—8月O3区域来源解析表明,各城市O3本地源贡献较弱而传输贡献影响显著(>80%). ④ 山西省2020年6—8月O3行业来源解析表明,各市工业源类(电力源、焦化源和其他工业源)的贡献率在50%左右,柴油交通源贡献率在20%~27%之间. 研究显示,山西省O3污染传输贡献影响显著,联防联控势在必行,电力源、焦化源和柴油交通源对O3生成贡献较大,亟需优先加强管控.   相似文献   

9.
探究细颗粒物(PM2.5)和臭氧(O3)污染的时间变化特征,阐明PM2.5和O3复合污染过程中不同阶段环境空气污染物及气溶胶粒径分布的详细演变过程,对南京及长三角地区的大气污染防治具有重要指导意义.本文使用2015—2021年南京市环境空气污染物小时浓度数据,分析了该地区多年大气污染演变过程,并选取2015年10月12—17日时间段作为复合污染典型个例,对其生消过程和内在机理进行了详细分析.结果表明:(1)2015—2021年南京市各种大气污染物的变化特征具有明显差异. PM2.5、PM10和SO2浓度的年下降率分别为8.9%、6.2%和15.4%,O3浓度变化较小. CO浓度在2016年达峰后以每年7.6%的速率下降.NO2浓度在2015—2019年呈增加趋势.(2)2015—2021年污染特征发生较大变化,由PM2.5为主导变为由O3为主导的大...  相似文献   

10.
利用2015—2020年广东省102个国控大气环境监测站臭氧(O3)监测数据、广东省21个地市国家基本气象站地面气象观测数据和欧洲中期天气预报中心(ECMWF)第五代大气再分析全球气候数据(ERA5再分析资料),研究了2015—2020年广东O3污染特征、污染天气分型及局地气象要素影响.结果表明:2017—2019年广东O3污染较严重,4—5月O3浓度逐步上升,6月出现一定下降后7月开始持续上升,峰值出现在9—10月;珠三角O3超标率明显高于全省其他地区,粤东O3超标率低于全省平均水平,但浓度平均值高于全省其他地区.基于自组织映射(SOM)方法,将2015—2020年逐日海平面气压和10 m水平风进行分型得到12类环流型,按污染程度分为“污染天气型”、“轻污染天气型”和“清洁天气型”.其中“污染天气型”有台风外围叠加副高型、冷锋前部型、热带系统降水前静稳型、高压底前部型4类.12类天气型所对应的O3浓度与日照时数、最高气温呈显著正相关...  相似文献   

11.
为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.   相似文献   

12.
郑新梅  胡崑  王鸣  谢放尖  王艳 《环境科学》2023,44(8):4231-4240
作为中国最重要的城市群之一,近年来长江三角洲(YRD)地区大气臭氧(O3)污染问题突出.于2020年7~9月和2021年4~5月在南京市南部地区溧水站点开展了大气O3、氮氧化物(NOx)和挥发性有机物(VOCs)等污染物的在线观测.在此基础上分析了溧水站点O3的污染特征并与城区站点进行比较,发现溧水站点O3污染较城区站点更加严重.在观测期间选择了3次典型的O3污染过程,分别为2020年8月16~27日、 2020年9月3~11日和2021年5月17~25日.利用基于观测的模型(OBM)分析了这3次污染过程的O3-VOCs-NOx敏感性.基于OBM所模拟的O3前体物相对增量反应性(RIR)和NOx和VOCs削减情景下O3生成等值线(EKMA曲线)结果显示,3次污染过程中O3-VOCs-NOx敏感性分别处于N...  相似文献   

13.
为研究不同污染水平下,O3浓度对气温升高的敏感程度,利用2018—2020年5—9月近地层O3日最大8 h平均浓度(O3-8 h浓度)和日最高地面气温(Tmax)数据,拟合O3-8 h浓度对Tmax变化的响应斜率(m O3-T),据此对比分析不同类型站点m O3-T的差异和O3污染特征.结果表明:(1)各站点O3-8 h浓度均随Tmax升高而增加,在24~36℃气温范围内该趋势最明显.(2)城区点m O3-T最高,高达10.6μg/(m3·℃);北部远郊区点和北部背景点m O3-T较低,低至5.2μg/(m3·℃);近郊区点与城区点的m O3-T相当.(3)总体看,北京市m O3-T较高,与O3污染高发地—美国加州南海岸地区20世纪90年代相当,说明目前北京市O...  相似文献   

14.
臭氧(O3)对生态环境质量影响程度不断加深,统计发现,2019—2021年长沙市O3超标的高发时间为夏、秋季,总辐射量≥0.85 MJ/m2、最高气温≥32℃、相对湿度≤65%为长沙市O3生成较为有利的气象条件。利用基于观测的模型(OBM)模拟了污染高值时段长沙市3个站点区域的最优达标减排方案:环保学院站点区域应单独削减40%VOCs;高新区环保局站点区域应单独削减21%VOCs;马坡岭站点区域不具备达标条件,但单独削减VOCs可使O3浓度下降速度最快。因此在不利的气象条件下,有针对性地设计科学的减排方案,可以显著降低O3浓度。  相似文献   

15.
基于2013~2020年高时空分辨率的PM2.5和O3在线监测数据以及气象观测数据,利用KZ(Kolmogorov-Zurbenko)滤波耦合逐步回归等技术,对天津市PM2.5和O3浓度变化趋势、相互关系和影响因素进行了分析.结果表明,与2013年相比,2020年天津市PM2.5浓度下降50.0%,O3浓度上升25.8%.从月际变化来看,与2013~2017年相比,2018~2020年天津市PM2.5浓度月际间差异逐渐缩小,O3浓度从4月开始出现明显上升,污染发生时间节点提前.O3与PM2.5的相关性呈现明显的季节性分布特征,冬季整体呈负相关,夏季正相关且相关性比其他季节高.不同季节O3与PM2.5之间的拟合斜率与相关性系数整体呈正比例关系,拟合斜率与相关性系数的比值逐年升高说明PM2.5对O3...  相似文献   

16.
近年来城市臭氧(O3)污染问题日益突出,影响O3污染的关键气象因子尚不明确,因此分析典型城市——苏州的O3污染特征,探究O3污染的高影响气象因子,对该区域大气污染防治具有重要意义.基于苏州环境监测中心2015~2020年4~9月逐小时O3浓度数据及同期气象观测资料,应用相关分析和机器学习方法对其开展相关分析研究.结果表明:(1) 6年间O3污染高发季,O3污染超标率均达20%以上,O3污染日数和以O3为首要污染物的污染日数占比均逐年上升,O3污染问题日益凸显;(2) O3浓度存在单峰日变化特点,谷值出现在07:00前后,峰值出现在15:00~16:00;其与气温和太阳辐射能的日内变化趋势较一致,但其浓度峰值出现时刻又滞后于二者. 2017年和2019年O3有典型的“周末效应”,周末较高的太阳辐照度对O3浓...  相似文献   

17.
城市臭氧(O3)污染已成为当前主要的大气污染问题之一,也是空气污染防控面临的新挑战. 然而,基于长时段连续监测数据的O3浓度季节性变化规律及成因解析仍较薄弱. 本文基于2014年3月1日—2021年2月28日空气质量在线监测平台日尺度数据,通过偏相关等方法探讨京津冀及周边地区“2+26”城市O3的季节性变化规律. 结果表明:①“2+26”城市2014—2020年O3年均浓度上升速率为3.82 μg/(m3·a),呈现先上升后下降的趋势,下降速率小于上升速率;O3浓度的季节性变化特征表现为夏季>秋季>春季>冬季. ②2014—2020年O3轻度污染天数占比最大且呈上升趋势,除北京市外,其他城市夏季O3中度污染天数上升趋势明显. ③2017—2020年O3浓度与CO、NO2浓度的显著负相关性在夏季和冬季有所增强. O3与SO2浓度的关系由2014—2017年春季、夏季和秋季的显著负相关变为2017—2020年夏季和冬季的显著正相关(P<0.05). ④春季和秋季O3浓度与日均气温呈显著正相关,夏季和冬季O3浓度与相对湿度呈显著负相关,与日均风速的相关性则相对较弱. 研究显示,“2+26”城市O3污染协调治理成效显著,需在保持现有NOx控制力度基础上强化VOCs控制,加强SO2治理,进一步遏制夏季O3浓度上升.   相似文献   

18.
基于北京市34个空气质量监测站点收集的5种主要污染物浓度(NO2、CO、O3、PM2.5、PM10)数据,对2018~2020年北京市5个交通站点污染物浓度进行分析,并与11个城市评价站点及2个背景点(密云水库、定陵)进行对比.结果表明:(1)3a间各污染物浓度年际变化总体呈下降趋势,除PM10外,交通站点各污染物浓度降幅均大于城市评价站点.2020年交通站点NO2降幅最大,比2018年下降了31.37%.除个别时期外,5种污染物浓度在交通站点比城市评价站点普遍高出3%~50%.且以NO2最为突出.(2)2018~2020年各监测站点不同污染物浓度的季节变化特征表现不同.O3夏季高、冬季低,最高值出现在2018年6月;其余4种污染物浓度基本表现为冬季高、夏季低;2018年3月受沙尘及不利气象条件影响,污染物浓度出现了极高值.(3)为研究新冠肺炎疫情对交通污染排放的影响,比较了5种污染物的浓度变化.与2019年同期相比,疫情后三个阶段的NO2下降最为显著.交通站点NO2、CO、PM2.5平均降幅比城市评价站点高出了4.81%、10.21%、4.38%.  相似文献   

19.
针对湖南省臭氧(O3)污染加剧但是相关的研究较为缺乏的现状,以长沙市为研究区域,基于观测数据,结合气象校正、基于经验的模型(EOF)和绝对得分受体模型(APCs),识别量化了2018~2020年气象、本地光化学生成和外围传输对O3污染相对贡献的影响,分析了2018~2019年和2019~2020年O3趋势变化的主控因素.结果表明,短期范围内,气象条件是O3污染事件发生的重要诱发因素.对长沙市整体来说,在时间上,2018~2019年期间,气象和本地前体物排放影响作用的增强是O3浓度升高的关键驱动因子.2019~2020年期间,气象、本地前体物排放和外围传输影响均呈现下降的趋势,是导致O3浓度降低的重要影响因素.空间上,2018~2020年时间段,气象、本地前体物排放和外围传输主要影响区域分别为长沙市偏东、偏北和偏南部区域.其中,外围传输的作用持续减弱,2018~2019年期间,长沙市北部天然源排放水平的升高使得O3浓度上升,南部区域NO...  相似文献   

20.
为研究济南市和青岛市臭氧(O3)浓度长期变化特征及其气象影响因素,基于2014—2021年近地面O3连续8年观测资料和同期气象资料,揭示O3浓度长期变化特征,分析O3浓度与气象因子关系,阐明O3主要输送路径和潜在源区.结果表明:(1)整体上,济南市O3污染程度高于青岛市,2个城市O3污染均集中在4—10月.长期趋势上,2014—2021年济南市O3日最大8 h平均浓度第90百分位数(简称“O3-8 h 90th浓度”)总体呈先升后降的趋势,峰值出现在2019年;青岛市2019年和2017年O3-8 h 90th浓度相对较高,其他年份O3-8 h 90th浓度差异不大.月变化上,济南市O3-8 h 90th浓度季节性变化较明显,呈单峰状;而青...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号