首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
吴也正  张鑫  顾钧  缪青  魏恒  熊宇  杨倩  吴斌  沈文渊  马强 《环境科学》2024,45(3):1392-1401
以2017~2021年的5~6月苏州市城区站点的大气污染物浓度为研究对象,分析了臭氧(O3)、氮氧化物(NOx)、总氧化剂(Ox)、一氧化碳(CO)和挥发性有机物(VOCs)等污染物的变化特征,利用基于观测的模型(OBM)研究了O3污染成因及其年际变化,解析了环境空气VOCs的主要来源及其变化趋势.结果表明:①近年来苏州Ox平均体积分数以及NOx和CO平均浓度整体呈下降趋势,但VOCs的体积分数整体呈上升趋势;O3污染天光化学反应前体物浓度水平仍较高,且显著高于优良天.②近年来苏州O3生成处于VOCs控制区;苏州市VOCs和NOx长期减排比例应不低于5∶1,在VOCs控制方面应注重对芳香烃和烯烃的减排.③源解析结果显示,工业排放、汽油车尾气和柴油机尾气是苏州市VOCs的主要排放源;近年来工业排放源和溶剂使用源有所下降,但汽油车尾气源和油气挥发源贡献率上升明显,且上述两类污染源排放VOCs的O3生成潜势较高.④综合分析各排放源对O3生成潜势的贡献发现,溶剂使用源和汽油车尾气源的VOCs排放是影响苏州市O3生成的关键因素.  相似文献   

2.
以PM2.5和O3浓度超标为表征的区域性大气复合污染已成为当前我国大气污染的主要问题,严重影响到经济的发展和社会的和谐,探究PM2.5与O3的协同控制近年来成为大气污染防控的热点.本文基于WRF-Chem模式,结合气象、大气污染物观测数据及MEIC排放清单等数据,依据不同比例的NOx和VOCs减排量,设计了36组减排情景,模拟了长三角地区PM2.5和O3复合污染时段的空气质量状况.同时,利用综合经验动力学(CEKMA)方法,综合考虑NOx和VOCs减排的边际效益成本和环境健康效益,评估了长三角地区NOx及VOCs减排对PM2.5和O3大气污染控制的影响.最后,定性并定量地研究两者的协同关系及协同减排效果,给出了该区域在复合污染情景下的先侧重VOCs、后侧重NOx减排的协同优化路径,采取先减少NOx排放约70%(或60%)且减少VOCs排放约10%(或20%),再削减剩余VOCs及NOx排放量的方案,减排的环境空气质量改善效率可以分别达到最优路径的90%(或80%)以上,而等比例同时减排NOx和VOCs对区域空气质量的改善反而是效果不佳的 减排方案之一.研究方法和结论对区域大气环境的综合治理具有重要的应用价值,对我国其他地区的大气污染防治及相关研究也具有借鉴意义.  相似文献   

3.
周红  王鸣  柴文轩  赵昕 《环境科学》2024,45(5):2497-2506
明确臭氧(O3)与前体物的非线性关系是O3防控措施制定的基础和关键.基于北京城区站点2020年4~9月O3、挥发性有机物(VOCs)、氮氧化物(NOx)和气象要素在线观测,分析了O3及其前体物污染特征,利用随机森林(RF)模型结合SHAP值探究了影响O3的关键因素,并通过多情景分析探讨了O3-VOCs-NOx敏感性.相关性分析结果显示O3小时浓度与温度(T)呈显著正相关,与TVOCs和NOx呈显著负相关;但从每日结果来看,O3T、TVOCs和NOx均呈显著正相关.RF模型模拟的O3浓度与实测值吻合较好,进一步计算了各个特征变量的SHAP值,结果显示T和NOx对O3影响最高,但前者是正向影响,而后者是负向影响.以观测期间O3污染天的NOx和VOCs平均值为基础情景,设置了对应不同NOx和VOCs的多种情景,并利用RF模型计算不同情景下的O3,得到O3等值线(EKMA曲线),结果显示北京城区O3-VOCs-NOx敏感性处于VOCs控制区,与基于观测的盒子模型(OBM)得到的结果一致,这说明RF模型可以用作O3-VOCs-NOx敏感性分析的一种补充方法.  相似文献   

4.
基于2019年五指山背景点、海口市和三亚市的环境空气自动监测数据和气象观测资料,分析了海南省背景区域和重点城市O3及其前体物NO2污染特征;结合挥发性有机物(VOCs)在线监测数据,分析了五指山背景点VOCs的时间变化规律、O3浓度高值月份O3及其前体物VOCs和NOx的污染特征以及VOCs的臭氧生成潜势(OFP).结果表明,O3是影响五指山背景点空气质量的关键污染物,五指山背景点O3日最大8 h浓度平均值与海口市和三亚市显著相关.背景点NO2月均浓度水平显著低于城市点,然而背景点和城市点O3月均浓度水平和变化趋势高度一致.背景点O3变化与风向密切相关,春夏季偏南风频率较高,O3浓度相对较低;秋冬季以东北风为主,易受内陆污染输送影响,O3浓度较高.五指山背景点春夏季VOCs体积分数低于秋冬季,但对应的OFP高于秋冬季;其中异戊二烯夏季体积分数显著高于秋冬季,且其夏季体积分数占总挥发性有机物的比例最高,对应的OFP贡献率可达70%以上,O3则表现出秋冬季显著高于夏季的特征.11月O3高浓度时段乙炔和芳香烃的体积分数较清洁日出现较大上升,同时其对应的OFP显著上升.VOCs优势物种和OFP主要贡献物种的分析结果表明,O3高浓度时段机动车尾气和油气挥发排放源对五指山背景点VOCs的化学组成和OFP有重要贡献.  相似文献   

5.
臭氧(O3)污染已经成为我国主要城市区域大气环境的首要污染物,由于其生成与前体物之间呈现高度非线性的关系,O3生成机制的识别对前体物的减排具有基础性的重要作用.针对常规方法难以较好对机制的长期演化特征进行识别问题,基于常规观测数据(O3、NO2)和温度(T)与挥发性有机物活性(VOCR)之间的关系,从NO2T两个维度对珠三角区域O3的生成机制进行了识别并做校验,分析了2006~2020年期间O3的趋势变化规律和原因,研究了机制的长期演化特征.结果表明,O3浓度随NO2T水平的升高呈现升高、稳定、下降和再次升高的趋势变化规律,当ρ(NO2)处于0~35、35~45、>45 μg·m-3T处于>30、25~30、<25℃时,机制分别处于NOx控制区、过渡区和VOCR控制区.不同时间段,随着T升高VOCR随之升高,推动了O3浓度上升.由于前体物排放趋势变化和O3生成机制状况不同,O3浓度在不同时间段和T条件下的趋势变化规律不同.整体上,珠三角区域西部偏VOCR控制区,东部偏过渡区,两个维度机制的识别结果具有较高一致性.随时间变化,西部区域的过渡区向VOCR控制区转变,东部区域的VOCR控制区向NOx控制区转变.在不同时间段,随着T升高O3生成对NOx的敏感性增强,随时间变化,高温和低温条件下O3生成分别对NOx和VOCR的敏感性增强.  相似文献   

6.
兰州市是我国首个发现光化学烟雾事件的城市,其盆地地形、特殊的气象条件及较高的石化工业产业的排放,使得近年来臭氧浓度急剧上升.本论文基于兰州市2016—2019年4年的空气质量自动监测数据以及中国气象网站提供的温度、湿度、气压等气象参数,对兰州市大气臭氧(O3)和其前体物(NOx)污染的时空分布特征及城关城区和西固工业区的VOCs物种组成进行研究;利用HYSPLIT模型,通过大气的扩散、传输过程分析造成臭氧污染特征的原因;利用OZIPR模型绘制出臭氧等浓度曲线(EKMA),对西固工业区和城关城区的敏感区进行了分析,结果表明城关城区的EKMA曲线的脊线VOCs/NOx比值约为15∶1,臭氧敏感性属于VOCs控制区,而西固工业区EKMA曲线的脊线VOCs/NOx比值约为25.6∶1,敏感性与历年的NOx控制区不同,转变为VOCs控制区.同时,基于MIR法和Prop-Equiv法两种方法估算了各VOCs物种对臭氧生成的贡献,结果显示在夏、冬季烯烃均为主要的贡献物种.并识别出高反应活性VOCs物种,初步解析来源.最后针对城关城区和西固工业区分别提出了详尽的臭氧防控及其前体物的减排对策建议.  相似文献   

7.
近年来,我国臭氧(O3)污染日益严重,识别O3对前体物挥发性有机化合物(VOCs)和氮氧化物(NOx)的敏感性对科学制定区域O3污染防治政策具有重要意义.以南京市2017年7月下旬的一次O3污染事件为例,探讨了基于三维模型的光化学指标法、敏感性系数法以及基于观测的OBM方法在识别南京市O3生成敏感性方面的差异.结果表明,光化学指标法和敏感性系数法得到的南京市O3敏感性的空间分布较为一致(一致性超过50%).其中,敏感性系数法对应的过渡区范围更广,而光化学指标法更倾向于将O3生成判定为只对VOCs或NOx敏感.不过,光化学指标法的结果与采用的临界值有关.OBM方法受观测数据质量影响较大,如NO2观测误差(观测浓度高于实际浓度)会造成OBM低估O3对NOx的敏感性.在判定重污染阶段的O3敏感性时,各方法间差异较大.光化学指标法偏向于VOCs控制,而OBM和敏感性系数法的结果则相对接近,倾向于NOx控制或共同控制.  相似文献   

8.
基于观测模型的成都市臭氧污染敏感性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
2019年4—8月,在成都市城区开展了O3、NOx、VOCs及气象参数的连续在线观测,基于观测数据OBM模拟的方式,对O3超标日的敏感性及收支进行了分析.研究发现,成都市城区O3超标日对应的绝大部分前体物的浓度均有所上升,基于VOCs的组分变化分析推断工业源排放在超标日可能存在较大幅度的增加.相对增量反应活性(RIR)值结果表明,成都市城区O3超标日对人为源VOCs(AVOCs)敏感性最强,其次为天然源(BVOCs)和CO,而对NOx为负敏感性,控制AVOCs对站点超标日的O3浓度下降最为有利;逐月变化来看,O3对AVOCs和NOx的敏感性逐月差异较小,对BVOCs的敏感性在6—7月最强,对CO的敏感性在4—5月最强.观测点位处于典型的VOCs控制区,以O3浓度为等值线的EKMA曲线显示4—5月脊线比例约为13,6—7月及8月的脊线比例约为8.建议在开展O3防控时,VOCs的减排比例应远大于NOx,且春季的减排比例应大于夏季.典型O3污染日的日最大O3小时生成速率为10×10-9~18×10-9· h-1,上午存在O3输入,下午O3本地生成占主导,其余时段O3输出影响较强.  相似文献   

9.
珠三角空气质量模拟关键不确定性来源识别   总被引:2,自引:1,他引:1  
由于受到模型输入参数不确定性和模型结构不确定性的影响,利用大气化学传输模型模拟空气质量普遍存在偏差.对大气化学传输模型进行不确定性诊断分析、识别其关键不确定性来源是提高空气质量模拟的重要手段,本研究以珠三角为研究区域,利用HDDM-SRSM不确定性诊断方法量化了清单排放(SO2、NOx、VOCs和NH3)、边界条件浓度和气象(风速和温度)等模型输入参数不确定性对空气质量模拟的影响.结果表明:SO2、NO2和O3模拟受排放、边界条件和气象不确定性影响明显,其相对不确定性为15.19%~43.33%.在这些因素中,边界条件、风速和前体物(NOx和VOCs)排放是O3模拟的关键不确定性来源,但各因素不确定性贡献比例在昼夜存在明显差异.在夜间,风速不确定性对O3模拟影响增大,其平均贡献比例上升至29.6%,表明改进风速模拟有助于改善夜间O3模拟;在白天,NOx和VOCs排放不确定性对O3峰值浓度模拟影响增大,其平均贡献比例上升至32.26%,表明改进前体物排放模拟有助于提高白天O3模拟准确性.不同于O3,SO2、NO2模拟更容易受到排放不确定性的影响,尤其是垂直分配的不确定性.模拟与观测结果对比也表明,合理的烟囱参数设置可以降低源排放垂直分配不确定性,提高SO2和NO2的模拟效果.  相似文献   

10.
严茹莎  王红丽  黄成  王倩  安静宇 《环境科学》2021,42(8):3577-3584
随着大气污染治理措施的不断推进,近年来上海市PM2.5浓度呈现明显的下降趋势,但O3污染现象依然频发,因此分析O3污染发生规律,科学制定O3削峰方案是目前亟需解决的问题.本研究以2017年7月为例,期间长三角17个城市累计O3污染天数165 d,其中上海最为严重,7月超标率为64.5%,分析前体物浓度和气象要素,主要是由于高温、低湿、小风不利气象条件和较高的前体物排放共同导致,期间上海市NO2平均浓度为27.1 μg·m-3,VOCs体积分数为22.5×10-9.通过WRF-CMAQ情景模拟,仅上海进行前体物削减,对区域性O3污染控制较为有限,建议多城市共同削减,上海及邻近周边9城市削减VOCs排放30%,上海O3日最大8 h浓度可下降7.2%,如果扩大到17个城市削减,上海O3日最大8 h浓度降幅为7.8%.同时建议严格控制前体物削减比例,VOCs :NOx削减比例应大于3 :1,否则会导致部分地区O3浓度反弹.  相似文献   

11.
2019年7月石家庄市O3生成敏感性及控制策略解析   总被引:1,自引:1,他引:0  
基于石家庄市2019年7月近地面污染物和气象观测数据,分析夏季O3污染状况及其影响因素;结合WRF-CMAQ模式和O3浓度等值线(EKMA曲线),探究不同区域O3-VOCs-NOx的非线性响应关系,旨在探究最佳的前体物减排方案.结果表明,观测期间,石家庄市市区MDA8 O3超标率高达70.9%.污染天期间,伴随着高温、低湿、小风,且以南风和东南风为主.石家庄市市区属于VOCs控制区,郊县为NOx和VOCs协同控制区.在臭氧污染时段,市区在仅削减NOx排放,且削减比例超过50%时,持续减排NOx使得O3浓度呈逐渐下降趋势.在非臭氧日时段,市区在VOCs和NOx的削减比例大于1倍时,O3浓度才不会出现反弹.对于市区应考虑以仅削减VOCs为先;对于郊县区域而言,不同的NOx和VOCs削减比例下,O3浓度均会下降...  相似文献   

12.
王峰  汪健伟  杨宁  翟菁  侯灿 《环境科学》2021,42(12):5713-5722
本文基于三维区域空气质量模式WRF-Chem,通过修改模式化学模块,量化输出过程量和诊断量,提供了一种定量分析挥发性有机化合物(VOCs)源强不确定性对O3生成影响的方法.为无法定量计算VOCs源强导致的臭氧生成率[P(O3)]偏差,以及由此对O3体积分数分布和污染控制相关联的VOCs敏感区和NOx 敏感区分布的误判提供了方法参考.采用标准统计参数对WRF-Chem模式的气象场与污染场模拟性能进行了评估,相关指标均优于前人结果.以INTEX-B(intercontinental chemical transport experiment-phase B)人为源、FINNv1(fire inventory from NCAR version 1)生物质燃烧源和 MEGAN(model of emissions of gases and aerosols from nature)生物源作为基准源,并以卫星观测数据作为约束,对排放源进行改进,评估了源改进前后臭氧生成率[P(O3)]、O3体积分数和O3控制敏感区指标(Ln/Q)的变化情况.仅人为VOCs(AVOCs)源增加68%后,P(O3)模拟峰值增升比例达13%~82%,以北京观测站点为例,P(O3)模拟月均峰值增加42%(22.5×10-9 h-1).对P(03)形成贡献比例最大的主要化学反应是HO2+NO(占比约68%),AVOCs源增加68%后,该反应贡献比例下降至65%.在改进源下,P(O3)普遍增加达到2×10-9~4×10-9h-O3各季节增幅较大的区域均主要集中在京津冀、长三角和珠三角中心城市及周边区域,与我国大型城市区基本都是VOCs敏感区的结论一致.整体而言,VOCs源强改进后,Nox敏感区O3体积分数增加幅度不大,不超过4×10-9,而部分VOCs敏感区增幅超过20 x10-9.VOCs源强的不确定性会影响O3形成过程中Nox和VOCs敏感区的判断,特别是VOCs源强明显低估会夸大VOCs敏感区的范围,从而降低O3调控对策的有效性.  相似文献   

13.
钱骏  徐晨曦  陈军辉  姜涛  韩丽  王成辉  李英杰  王波  刘政 《环境科学》2021,42(12):5736-5746
2020年4月24日至5月6日成都市臭氧(O3)和细颗粒物(PM2.5)复合污染过程期间,在成都市城区开展大气臭氧及其前体物(NO,、VOCs)和气象参数观测实验,基于观测数据采用OBM模型对市区臭氧敏感性和主控因子进行识别,并采用PMF模型对关键VOCs物种进行来源解析.结果表明,臭氧超标日各污染物浓度均有所上升,VOCs物种中芳香烃和含氧(氮)化合物上升幅度较大;成都市城区O3超标天对应的臭氧处于显著VOCs控制区,芳香烃和烯烃对O3生成最为敏感,且存在削减NOx的不利效应;结合VOCs来源解析,城区VOCs主要来源:移动源(22.4%)、餐饮及生物质燃烧源(21.8%)、工业源(15.1%)和溶剂使用源(9.3%),臭氧超标天溶剂使用源、餐饮及生物质类燃烧源贡献率明显上升.成都市城区春季应以VOCs减排为重点,并加大芳香烃和烯烃相关源控制力度.  相似文献   

14.
高度城市化的珠三角地区臭氧污染频发,臭氧污染的非线性、区域性以及气象过程影响使臭氧精确防控面临巨大挑战.本研究利用臭氧源解析技术OSAT,分析不同传输通道下珠三角臭氧敏感区分布差异,量化城市间的臭氧传输贡献,并通过敏感性试验,探讨珠三角及典型城市的臭氧污染控制策略.结果表明,静风条件下,VOCs敏感区集中在珠三角中部城...  相似文献   

15.
为确定石家庄东部郊区交通干线附近O3生成光化学敏感性,利用2019年1月1日—2020年10月31日在线观测的NOx、NOy和O3等数据计算并分析了O3生成效率(OPE)及O3光化学敏感性的NOx临界浓度.结果表明:1交通干线附近O3光化学敏感性存在季节差异,春季主要受VOCs控制,整体OPE为2.6±0.3,夏、秋季节主要受NOx与VOCs协同控制,整体OPE分别为5.3±0.4和5.1±0.8;2NOx体积分数>11×10-9时,O3生成主要为VOCs控制;NOx体积分数介于6×10-9~11×10-9时,O3生成主要受VOCs与NOx协同控制;NOx体积分数<6×10-9时,O3生成主要为NOx控制;3O3生成敏感性存在日变化特征,10:00之前O3生成主要受VOCs控制,10:00—11:00是O3生成由VOCs控制转变为VOCs和NOx协同控制的过渡时段,12:00之后O3生成主要由VOCs和NOx协同控制,且午后14:00—16:00之间NOx对O3控制比例凸显.因此,石家庄O3治理不但要重视NOx与VOCs排放源的协同管控,尤其午后还需要对NOx排放源进行分时段精细化管控.  相似文献   

16.
To develop a sound ozone (O3) pollution control strategy, it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O3. Using the “Shunde” city as a pilot summer case study, we apply an innovative response surface modeling (RSM) methodology based on the Community Multi-Scale Air Quality (CMAQ) modeling simulations to identify the O3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O3 impacts of volatile organic compound (VOC) control strategy. Our results show that Shunde is a typical VOC-limited urban O3 polluted city. The “Jiangmen” city, as the main upper wind area during July 2014, its VOCs and nitrogen oxides (NOx) emissions make up the largest contribution (9.06%). On the contrary, the contribution from local (Shunde) emission is lowest (6.35%) among the seven neighbor regions. The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde. The results of dynamic source contribution analysis further show that the local NOx control could slightly increase the ground O3 under low (10.00%) and medium (40.00%) reduction ratios, while it could start to turn positive to decrease ground O3 under the high NOx abatement ratio (75.00%). The real-time assessment of O3 impacts from VOCs control strategies in Pearl River Delta (PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O3 concentration in Shunde.  相似文献   

17.
近年来,兰州市夏季臭氧污染问题日渐凸显,已成为影响当地环境空气质量达标的首要污染因子和制约环境空气质量持续改善的突出短板.解决臭氧污染问题需结合城市经济发展的实际情况定量评估前体物减排量并提出切实可行的减排对策,为环境管理的中长期规划提供科学依据.在2015年本地排放清单的基础上,通过情景分析法预测了兰州市2030年3种梯度城市发展与污染控制情景下臭氧的两类主要前体物氮氧化物(NOx)和挥发性有机物(VOCs)的排放量,利用WRF-Chem模型对不同情景下的2030年夏季臭氧污染程度进行了数值模拟,分析了臭氧浓度与生成敏感性的时空变化情况,并提出了兰州市臭氧前体物的总量控制参考和针对不同行政区的减排对策建议.结果表明,3种不同的城市发展与污染控制情景下兰州市2030年NOx排放量为4.57×104~12.14×104 t, VOCs排放量为5.30×104~7.69×104 t, NOx排放可通过调整能源结构,加强末端治理和限制机动车...  相似文献   

18.
中国中东部地区的空气污染主要集中在京津冀、长三角、珠三角、东北地区及汾渭平原等区域,各区域的污染排放特征各异.本文应用基于CMAQ(The Community Multiscale Air Quality)模式的自适应"nudging"源反演方法,反演中国中东部地区2016年12月—2017年1月逐日NOx污染源,分析上述主要污染区的污染物排放强度空间分布特征,并与2016年MEIC(The Multi-resolution emission inventory for China)排放源进行比较,检验反演源的可靠性.结果表明,2016年冬季各个区域反演源NOx排放强度空间分布特征与2016年MEIC排放源基本一致.京津冀地区高强度排放区域形成沿山前区域东北-西南走向的NOx高强度排放带;长三角地区NOx高强度排放区域位于常州、苏州、上海和湖州等城市构成的城市群;珠三角地区NOx高强度排放区域位于以广州为中心的大范围城市群且排放强度呈现向四周逐渐降低的放射状分布;东北地区NOx高强度排放区域空间分布特征呈现以城市为中心且稀疏分布;汾渭平原排放区域呈现以城市为中心且向峡谷中间集中分布,排放区域轮廓与汾渭平原狭长的新月状相符.  相似文献   

19.
成都市臭氧生成敏感性分析及控制策略的制定   总被引:5,自引:0,他引:5  
利用OZIPR模式结合经验动力学建模方法(EKMA)模拟成都市2017年O_3生成过程并绘制EKMA曲线,模拟过程采用CB05机理描述系统的动力学机理,结果表明,成都市O_3生成处于VOCs控制区,同时存在NO_x单独减少的不利效应,O3控制策略应对VOCs进行减排或同时减排VOCs和NO_x.选取5种VOCs和NO_x减排比例进行计算,分析结果发现,VOCs与NO_x减排量呈线性关系:VOCs=0.77NO_x+0.18.成都市"十二五"规划中NO_x减排目标为19.13%,代入上式计算后知,VOCs需减排33%才能使O_3最大小时浓度达到环境空气质量的二级标准.利用臭氧生成潜势(OFP)计算14种VOCs人为排放源对O_3生成的贡献,结果显示,对OFP具有主要贡献的有8种排放源,将33%的VOCs减排目标分配到这8种排放源中,可得各排放源的VOCs减排目标:移动源11.88%、溶剂使用源10.23%、能源民用燃烧3.3%、化工行业2.97%、露天秸秆焚烧1.49%、餐饮0.83%、汽油蒸汽0.63%、建材行业0.59%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号