首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
基于2022年1—12月青岛市沿海区域臭氧(O3)自动监测数据和气象观测资料,对O3污染变化特征及影响因素进行了分析,结合后向轨迹聚类与潜在源区分析等方法,对O3外来输送通道及潜在源分布情况进行分析研究。结果表明:青岛市沿海区域O3污染主要集中在4—10月份,日变化特征呈单峰单谷趋势,峰值出现在15:00—16:00;气象因素中,地面短波辐射对O3浓度变化的相对贡献最大,偏南风易导致O3污染;受二氧化氮(NO2)滴定作用以及海陆风转换影响,沿海区域O3峰值与谷值均滞后青岛城区1 h左右;O3生成整体处于VOCs控制区,1-丁烯、正丁烷与异戊烷是O3污染期间导致O3浓度上升的关键组分;O3污染的主要潜在源区为长三角北部和黄海近岸海域,以及山东中南部地区。  相似文献   

2.
利用2016-2020年陕西省环境空气质量自动站的臭氧监测数据,分析西安市大气环境中臭氧污染的时间变化趋势及空间分布特征。从时间分布来看,西安市臭氧年均质量浓度呈先上升后下降的波动变化趋势,且浓度值略高于全国平均水平;臭氧月均浓度具有明显的季节变化特征,月超标天数和月均质量浓度均在6月达到峰值;臭氧质量浓度日变化规律在全年和四季完全一致,均呈单峰型,日内小时平均质量浓度超标最多时段集中在15:00-16:00;臭氧与NO2、CO均呈"此消彼长"的负相关关系。从空间分布来看,西安市12个国控评价点位的O3-8 h浓度分布变化大致分为单峰型和持续递减型,浓度主要集中在40~80 μg/m3;国控点和省控点的臭氧浓度时间分布趋势一致,空间分布存在区域性差异;全市20个区县(开发区)的臭氧污染呈现南北中心城区高、东西远郊区低的空间分布特征。总之,西安市臭氧污染的时空分布主要受到气象条件、污染物排放和城市布局差异的综合性影响。  相似文献   

3.
京津冀区域臭氧污染趋势及时空分布特征   总被引:15,自引:11,他引:4  
为研究京津冀区域的臭氧(O_3)污染情况及其时空分布特征,对2013—2015年京津冀区域13个城市80个国家环境空气监测点位的监测数据进行了统计分析。结果表明:2013—2015年,京津冀区域O_3污染状况整体呈加重趋势,其中2014年污染状况最为严重。13个城市中O_3污染最严重的城市为北京和衡水,连续3年均超标,且处于上升态势中。区域内不同城市O_3污染趋势并不相同。京津冀区域O_3浓度变化呈明显的季节变化特征,春末和夏季的O_3污染最严重。O_3-8 h(臭氧日最大8 h均值)年均值的高值区主要分布在北京中北部、承德和衡水等,2013—2015年第90百分位O_3-8 h的高值区均集中分布在北京。O_3的浓度峰值时间要晚于NOx2~5 h。O_3在春、夏季呈单峰分布,白天15:00左右出现最大值,在秋、冬季浓度较低,全天波动不大。  相似文献   

4.
大连市臭氧污染特征及典型污染日成因   总被引:1,自引:1,他引:0  
通过对大连市区10个空气监测子站的监测数据进行分析,探讨了大连市臭氧污染的时空分布、气象条件对臭氧污染的影响,对臭氧污染日进行了归类分析。结果表明,大连市臭氧污染主要出现在4—10月。在强紫外辐射、高温、低湿、低压和低风速的气象条件下,监测点位的臭氧浓度较高。臭氧污染日的日变化分为单峰型、双峰型和夜间持续升高型3种类型。通过对2015年的一次高浓度臭氧污染过程的气象条件、污染物浓度和污染气团轨迹进行分析,发现臭氧浓度在夜间持续升高现象与区域输送密切相关。  相似文献   

5.
基于Sentinel-5P卫星遥感数据,分析济南市2019—2021年夏季甲醛浓度的时空分布特征及对臭氧污染的影响。结果表明:研究期间夏季甲醛平均柱浓度呈逐年下降趋势,2020年同比降幅最大为24%;甲醛浓度高值区域主要分布在人口密集的市区及工业聚集的章丘区、济阳区和商河县,呈现由城市中心向外扩散的趋势;甲醛浓度受周边城市的影响,形成一条东西向的区域化污染带;甲醛对臭氧的影响主要表现在臭氧污染轻度或污染初期,而氮氧化物的排放进一步加重臭氧污染。  相似文献   

6.
为掌握滨海城市环境空气质量变化特征,为污染精准管控和打赢蓝天保卫战提供科学参考,以沿海重要中心城市青岛市为研究区域,基于青岛市9个国控空气监测点位监测结果,对2013—2019年青岛市6项空气污染物浓度监测结果进行分析,总结归纳青岛市空气质量时间变化特征。结果表明:2019年,青岛市空气质量超标,超标指标为颗粒物;青岛市2014年空气质量最差,2018年空气质量最好;2013—2019年,青岛市O3浓度总体呈上升趋势,其余5项污染物浓度呈下降趋势;青岛市环境空气主要污染物是PM2.5,其次是O3;青岛市空气质量冬季差于其他季节,春节期间烟花爆竹燃放等人为活动使空气质量变差。  相似文献   

7.
基于Aura卫星臭氧监测仪(OMI)数据,分析了2011—2018年中国东部地区对流层NO2柱浓度的时空分布规律,以广泛而客观地验证NO2减排成效。结果表明:进入"十二五"以来,中国东部地区对流层NO2柱浓度快速下降,高值区域范围快速收缩甚至消失;华北平原、长江中下游平原污染相对严重,同时这些地区污染程度正在得到较快速的缓解;京津冀、长三角、珠三角是中国东部地区对流层NO2柱浓度相对最高、下降速度最快的典型区域;中国东部地区NO2减排取得的成效与产业转型升级、能源结构调整及严控移动源排放等政策措施密不可分。  相似文献   

8.
基于2017年1月至2020年6月的江西省国控点臭氧监测数据和同期气象观测数据,研究江西省臭氧污染特征及其与气象条件的关系。结果表明:2017—2019年,江西省臭氧超标时间和质量浓度呈现出逐年增加的趋势; 4—6月和8—10月是江西臭氧污染高发期,其中8—10月臭氧污染最严重;臭氧1 h浓度日变化呈现"单峰"分布特征,早晚浓度低,上午09:00浓度快速上升,15:00达到峰值。除景德镇外,2017—2019年江西省臭氧污染在空间上总体呈现出南高北低的特征,2019年臭氧污染在空间上呈现出总体平均分布的特征。大体上,江西省11个设区城市臭氧超标天数比例的峰值在(30,35]℃日最高气温区间。晴朗天气时的地面低压系统与臭氧污染关联性强,江西省11个设区城市在日均地面气压(990,1 013.25]hPa、日均地面湿度(50%,70%]和日均地面风速(1,2]m/s条件下臭氧容易超标,臭氧超标时地面主导风向主要为北风和东北风。  相似文献   

9.
利用南京市2022年挥发性有机物(VOCs)在线监测数据,对VOCs污染特征、来源及对臭氧的影响进行了分析研究。结果表明:2022年南京市φ(TVOCs)年均值为25.1×10-9,其中各组分占比为烷烃>含氧挥发性有机物(OVOCs)>氯代烃>烯烃>芳香烃>炔烃。TVOCs及烷烃、烯烃和芳香烃的体积分数季节变化表现为冬季>秋季>春季>夏季,φ(OVOCs)季节变化表现为夏季>秋季>春季>冬季。烷烃、烯烃和炔烃日变化呈“双峰型”特征,芳香烃和氯代烃为“单峰型”。臭氧生成潜势(OFP)贡献总体表现为OVOCs>烯烃>芳香烃>烷烃>氯代烃>炔烃,但冬季烯烃的贡献率最高。南京市臭氧生成的关键VOCs物种为乙醛、乙烯、丙烯、间/对-二甲苯和甲苯。正交矩阵因子分解结果显示,机动车尾气、生物质燃烧和工业生产是南京VOCs的主要来源;对南京臭氧生成贡献最大的VOCs来源为溶剂涂料使用和石化行业。  相似文献   

10.
为了解环境空气臭氧累积规律,利用2017年沈阳市环境空气臭氧浓度数据,统计分析臭氧累积速率,并利用回归方法拟合并优化臭氧浓度及其累积速率的时间序列模型,同时结合气温、风力、臭氧前体物等时序变化情况分析臭氧浓度的影响因素。研究发现:沈阳市臭氧月均浓度年变化、日均浓度年变化以及小时浓度日变化时序曲线均呈现单峰形态;年变化中,6月的臭氧浓度最大,4月臭氧累积速率达到最大值;日变化中,14:00臭氧浓度达到最大值,09:00—11:00臭氧累积速率最大,19:00—20:00臭氧迅速消减。温度、风速同臭氧浓度之间均有较好的正相关性。臭氧前体物二氧化氮、挥发性有机物与臭氧浓度之间均呈明显的负相关性。  相似文献   

11.
南京大气细颗粒中有机碳与元素碳污染特征   总被引:3,自引:0,他引:3  
为了解南京城区大气细颗粒物中有机碳与元素碳的污染特征,在国控点草场门进行了连续一年的PM2.5采样,分析了有机碳(OC)、元素碳(EC)、ρ(OC)/ρ(EC)污染特征和变化规律。结果表明,采样期间有些PM2.5的日均值超过了《环境空气质量标准》(GB 3095-2012)二级标准,ρ(OC)/ρ(EC)为0.77~4.98,平均值为1.92。PM2.5样品中OC约占18%、EC约占9%。  相似文献   

12.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

13.
采用数值模式与观测资料相结合的方式,对北京市2013年1月9~15日一次空气重污染过程的大气环境背景、气象条件和形成原因进行了初步分析。结果表明,此次重污染过程北京市空气质量从9日的二级跳至10日五级重度污染,11日一13日空气质量维持连续3d严重污染,14日降为重度污染,15日转为轻度污染;重污染过程期间10—14日P(PM2.5)平均值为323μg/m。,平均风速为1.47m/s,平均相对湿度为73.6%,24h变温基本为一2.72~2.68℃,24h平均变压为一3.65~2.63hPa。指出,此次重污染过程与当地气象条件密切相关,稳定的大气环流形势为污染的持续提供了大气环流背景,风速较小、湿度较大、边界层较低、持续逆温是造成重污染的主要原因,地面风场辐合及边界层下沉运动是造成重污染的重要原因。  相似文献   

14.
兰州市大气降尘中正构烷烃的分布特征及源解析   总被引:6,自引:0,他引:6  
采集了2005年春季兰州市不同功能区大气降尘样品,采用气相色谱/质谱法测定样品中的正构烷烃。结果表明,降尘中正构烷烃主要有2种类型,一种是后峰型,以C29为主峰碳,大于C25正构烷烃具有明显的奇偶优势,碳优势指数(CPI)为1.25~1.40;另一种是双峰型,分别以C29,C20,C19,C15为主峰碳,在C25或C27后有明显的奇碳数优势,CPI为1.26~2.35。研究区内不同区域降尘中正构烷烃分布有明显的变化,相对清洁区正构烷烃分布为后峰型,主要来源于燃煤、高等植物的不完全燃烧。工业区、商业区、商业居民混合区正构烷烃分布属于双峰型,既有高等植物蜡的输入,也有汽车尾气、石油化工的输入,且人为源的贡献较大。  相似文献   

15.
2008-2016年臭氧监测试点城市的臭氧污染特征   总被引:2,自引:0,他引:2  
选取臭氧试点城市北京、沈阳、上海和重庆,通过对2008-2016年臭氧监测数据进行分析研究,可以看出4个试点城市中北京的臭氧污染最严重。4个城市的臭氧污染特征均为高浓度臭氧所占比例较大,高值比较高,低浓度臭氧所占比例较小。北京、沈阳和上海的年平均臭氧浓度总体呈上升趋势。北京、上海、重庆、沈阳4个城市9年的超标天数比例分别为15.9%、7.7%、3.9%、6.5%。上海的臭氧浓度在秋季非常高。2012年的臭氧变化趋势比较异常,可能是由于2012年发生的不寻常气候条件导致。4个城市的臭氧浓度变化和气象条件的变化显著相关。  相似文献   

16.
In order to help guide air pollution legislation at the European level, harmful air pollution effects on agriculture crops and the consequent economic implications for policy have been studied for more than a decade. Ozone has been labeled as the most serious of the damaging air pollutants to agriculture, where growth rates and consequently yields are dramatically reduced. Quantifying the effects has formed a key factor in policymaking. Based on the widely held view that AOT40 (Accumulated exposure Over Threshold of 40 ppb) is a good indicator of ozone-induced damage, the Danish Eulerian Model (DEM) was used to compute reduced agriculture yields on a 50 km×50 km grid over Europe. In one set of scenarios, a ten year meteorological time series was combined with realistic emission inventories. In another, various idealized emission reduction scenarios are applied to the same meteorological time series. The results show substantial inter-annual variability in economic losses, due in most part to meteorological conditions which varied much more substantially than the emissions during the same period. It is further shown that, taking all uncertainties into account, estimates of ozone-induced economic losses require that a long meteorological record is included in the analysis, for statistical significance to be improved to acceptable levels for use in policy analysis. In this study, calculations were made for Europe as a whole, though this paper presents results relevant for Denmark.  相似文献   

17.
徐锋 《干旱环境监测》2012,26(2):81-84,111
利用乌鲁木齐市PM2.5//PM10自动监测数据,分析PM2.5与PM10的浓度分布特征和时间变化规律。结果表明,按照《环境空气质量标准》(二次征求意见稿)的标准限值,乌鲁木齐市冬季PM2.5污染重于PM10。PM2.5浓度为0.164mg/m3,超过二级年标准限值的3.7倍,超标率为73.9%。PM2.5浓度日变化曲线昼高夜低,呈单峰型,峰值出现在13:00~14:00(北京时间)。PM10中PM2.5所占比例较高,PM2.5/PM10为0.79,相关分析和检验显示PM2.5与PM10的线性相关显著,相关系数为0.92。  相似文献   

18.
海口市臭氧污染特征   总被引:8,自引:7,他引:1  
基于2013—2015年海口市4个空气质量自动监测站点数据,结合气象资料,分析了海口市O_3的污染特征。结果表明:海口市O_3总体优良,优良天数比例为99.4%,污染天数均为轻度污染;在良和污染天数中,O_3作为首要污染物的天数占40%,超过其他5项污染物占比。海口市10月O_3浓度最高。O_3月均浓度与温度呈负相关关系,同时与风向有密切关系:5—8月气温较高,以南风为主,O_3浓度较低;1月北风频率较高,易受外来污染传输作用,O_3浓度相对较高。O_3超标日以东北风为主,日变化并未呈现单峰型特征,12:00—22:00时段O_3浓度在10%范围内小幅变化。台风外围型和北方冷高压底部型是造成海口市O_3超标的2类典型天气形势。  相似文献   

19.
The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)avg(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)avg(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)avg(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3–16 Mg salt/ha⋅ year and 23–195 kg NO)3 -N/ha⋅ year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE’s also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (≥14 Mg/ha⋅ year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号