首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于碳监测网络测算城市人为碳排放通量,需要二氧化碳(CO2)格点化排放清单作为反演计算的先验信息。现有格点化清单大多针对全球或全国尺度编制,排放源的空间位置不确定性高,不足以支撑城市碳监测工作。以杭州市为例,构建了高空间分辨率(1 km)、分部门(工业能源、工业过程、交通等6类排放部门)的城市CO2格点化排放清单,并对其不确定性进行了表征。该格点化清单基于中国城市温室气体工作组编制的《中国城市二氧化碳排放数据集(2020)》,依据848个点源的精确位置信息和一系列空间代理数据,对各部门的城市CO2排放量进行格点化分配,得到杭州市高分辨率排放清单模型。与现有清单,如欧洲开发的全球大气研究排放数据库(EDGAR)、清华大学开发的中国多尺度排放清单模型(MEIC)等相比,本研究编制的格点化清单能合理地反映杭州市CO2排放的空间格局,包括人口、路网密集的市中心,萧山区和钱塘区的工业园区,钱塘江中上游沿岸的水泥企业等高排放热点,可以作为杭州市CO2反演的人为源先验清单。  相似文献   

2.
北京市废弃物处理温室气体排放特征   总被引:1,自引:0,他引:1  
基于《2006年IPCC国家温室气体清单指南》推荐的方法,结合《省级温室气体清单编制指南(试行)》和《城市温室气体核算工具指南》的部分数据与核算范围,针对固体废弃物填埋、焚烧和废水处理等过程,核算了北京市2005-2014年废弃物处理过程中温室气体总排放量。结果表明:2005-2014年北京市废弃物处理过程温室气体总排放量呈逐渐上升趋势,2014年温室气体总排放量比2005年增长98%。10年间,固体废弃物填埋过程一直是最主要的温室气体排放源,到2014年排放量达到最大,为416.3×104t二氧化碳当量(CO2e)。废弃物填埋、废水处理和废弃物焚烧过程占总排放量的比例分别为78.5%(CO2e质量分数,下同)、13.5%和8%。结合已有研究,系统优化国内7个典型城市废弃物处理温室气体排放因子,核算7个城市排放情况,并对比分析了北京市排放情况。  相似文献   

3.
采用LGR-密闭式动态通量箱法对城市绿地生态系统温室气体(CO2、CH4)通量的日变化、季节变化特征及其影响因子等进行了较为系统的研究。城市绿地花草CO2通量有明显的日变化和季节变化特征,白天通量值为负,是CO2的净吸收汇;夜晚为正值,是CO2的净释放源;7:00左右由源转为汇,17:00左右由汇转为源,不同花卉24 h总通量有正负2种结果。冬季草坪作为源的时间延长,而作为汇的时间缩短。光强和温度是影响CO2通量日变化和季节变化的主要因素。城市绿地CH4通量较小,不足以对温室气体总量产生显著影响。从减少温室气体排放的角度对城市绿地花草的选择提出了建议。  相似文献   

4.
卫星遥感技术是深入了解大气二氧化碳(CO2)时空分布特征的重要手段之一,由于探测技术的限制,目前基于卫星遥感观测数据反演的CO2产品的空间覆盖度较低,数据缺失严重,不足以反映CO2浓度的空间分布情况。现基于轨道碳观测卫星-2 (OCO-2)、哨兵5P (Sentinel-5P)、美国CO2同化模拟系统(Carbon Tracker)和欧洲中期天气预报中心第5代(ERA-5)气象再分析数据,结合时间序列拟合估算模型和随机森林算法,重构了2019—2022年中国地区高精度(0.05°×0.05°)大气CO2平均干空气混合比(XCO2),分析了中国地区CO2时空变化特征。与OCO-2和Carbon Tracker对比结果显示,重构得到的XCO2与OCO-2的观测结果一致性更高,均方根误差为1.05 ×10-6,决定系数高达0.96,可以在较高空间分辨率上体现中国地区XCO2的时空分布情况。基于重构的XCO2数据得知,中国地区XCO2呈现明显的季节性波动,XCO2呈冬春高、夏秋低的特征;2019—2022年,中国地区XCO2呈现逐年上升的趋势,增长率达到(2.41±0.01)×10-6/a,但近年来增长速率有所降低;从空间分布来看,中国东部、北部、中部地区的XCO2显著高于其他地区,且增长率也较高;进一步分析中国典型经济区的XCO2发现,杭州、天津、成都的XCO2在各经济区内的增长最为迅速。研究成果可为碳监测研究、碳排放清单验证、碳排放管理、温室气体减排等研究提供重要的数据支撑。  相似文献   

5.
采用文献计量方法,利用CiteSpace软件对Web of Science核心合集中2004—2020年以"Greenhouse Gases Monitoring"为主题词检索到的2 514篇文献进行可视化分析,从时间分布、国际合作、研究机构合作、研究领域、共被引分析和关键词分析等方面,揭示该领域的发展动态、研究实力分布、热点前沿等。结果表明:2004—2020年温室气体监测研究领域的发文数量总体呈现上升趋势,在全球应对气候变化的重大事件时间节点发文数量增幅较大;该领域发文量较多的国家和机构皆以发达国家为主,发展中国家中中国居首位,国家、机构合作关系紧密;温室气体监测研究涉及的学科领域较广,环境科学与生态学、环境科学、工程为排名前3位的学科领域,2010年后研究逐步拓展到建筑学、影像学、计算机科学、经济学等领域;该领域的研究知识基础主要聚焦温室气体浓度监测、来源去向、影响因素及变化趋势分析,温室气体监测技术方法研究及应用,以及森林、农业土壤碳汇研究等方面;通过不同时段关键词分析发现CO2、CH4和N2O一直是温室气体监测研究的重点对象,关注视角逐渐转向多因素、多领域、多技术、多方法、多策略研究。基于分析结果和中国实际,提出今后一段时期中国温室气体监测领域的研究重点和工作方向。  相似文献   

6.
为有效制定城市层面的低碳发展政策,实现碳达峰的发展目标,利用碳卫星2号(OCO-2)监测的高分辨率大气CO2柱浓度数据(XCO2),分析浙江省杭州、宁波和嘉兴3个典型城市的XCO2变化特征,以及人类活动和XCO2变化的关系;识别城市碳排放热点区域,评估碳排放热点源对XCO2的影响,并利用拉格朗日粒子扩散模型(LPDM)进行验证。结果表明:(1)2016—2021年3个城市的XCO2年增长量分别为3.1×10-6,2.3×10-6和2.2×10-6,杭州的增长量最为明显;杭州和宁波在2019—2021年XCO2增量明显,分别为8.0×10-6和5.7×10-6。杭州XCO2的变化趋势与临安大气本底站CO2观测数据的变化趋势一致。(2)与2017年相比,3个城市的建筑用地面积都略有增加,分别增加了0.9%,2.2%和4.8%;从人口和GDP数据来看,2016—2021年3个城市也均呈持续增加的变化趋势。表明CO2浓度升高与人类活动密切相关。(3)XCO2正距平高值区域基本都对应了碳排放热点源(电力企业)的下风向地区,电力企业CO2的排放会导致下风向地区的XCO2出现局地性增长,增量为7×10-6~9×10-6。  相似文献   

7.
选择某喷涂企业附近环境空气为采样点位,在3个监测时段(5、9、11月)基于成分监测车在线监测107种挥发性有机物(VOCs),分析环境空气中VOCs污染特征和成分,结合走航监测车进行溯源分析,利用MCM模式结合敏感性实验研究了臭氧生成机制。结果表明:5月A时段的VOCs总浓度(247.43 μg/m3)高于其他2个监测时段(134.29、107.07 μg/m3),体现了VOCs季节性的变化趋势;3个监测时段VOCs浓度均以含氧有机物为主,其占比分别为44.36%、55.30%和37.90%,其次为芳香烃和烷烃,但不同监测时段同类VOCs占比各不相同,体现了不同季节VOCs浓度的差异性。3个监测时段均排在浓度排名前10位的物种有6种,分别为乙醇、丙酮、对/间二甲苯、苯、二氯甲烷和甲苯,说明该监测点位存在稳定污染排放源。走航溯源监测获得空气点位及附近喷涂企业内VOCs浓度和成分特征,结果显示环境大气中的VOCs主要组分来自喷涂企业厂区使用的挥发性溶剂的排放和油性漆的挥发排放。研究臭氧生成潜势(OFP)可知,芳香烃的OFP值在3个监测时段占比最高,对臭氧生成贡献较高的物种主要有对/间二甲苯、甲苯等芳香烃,乙醇和甲基丙烯酸甲酯等含氧有机物,异戊二烯和丙烯等烯烃类物种。MCM模式结果显示:5月A时段监测期间的臭氧光化学生成速率大于9月B时段和11月C时段,O3生成过程主要受甲基过氧自由基(CH3O2)+NO 和过氧化羟基自由基(HO2)+NO 控制。相对增量反应敏感性实验结果显示:3个监测时段臭氧生成均处于VOCs控制区,5月A时段,控制异戊二烯、芳香烃类物种可以大幅减少臭氧的生成,9月B时段需主要控制芳香烃和含氧有机物的排放,11月C时段则需控制芳香烃物种的排放。就VOCs单体而言,3个监测时段减少对/间二甲苯的浓度,对臭氧生成影响较大。走航溯源耦合在线监测方法可以实现臭氧污染快速原位溯源。  相似文献   

8.
随着卫星遥感技术的发展,城市内部的二氧化碳柱浓度(XCO2)时空特征逐渐能够被识别。本研究基于轨道碳观测卫星(OCO-3)快拍(SAM)模式XCO2观测数据,探讨了上海市2020—2022年XCO2的时空分布特征以及该数据对于火电厂CO2烟羽信号来源识别的能力。结果表明,上海市XCO2呈现春季>冬季>夏季的特征,上海市XCO2年均值为418.3×10-6,高于华东地区的年平均值。从XCO2空间分布差异来看,中部和东北部是上海冬季XCO2的高值区域,这主要是由于城市中部人口密集,北部沿江区域大型电厂较为集中,在冬季盛行风西北风的作用下,CO2被传输至东部沿江多个行政区域。此外,结合近地面风场、CO2人为排放清单、电厂点源信息、对流层监测仪器(TROPOMI)卫星观测数据等,证实了OCO-3快拍模式具有探测到重点点源信号的能力。  相似文献   

9.
光腔衰荡光谱法(CRDS)和气相色谱法(GC)均被广泛应用于环境空气中甲烷(CH4)的测定。采用CRDS和GC这2种自动监测方法对CH4标准气体和环境空气样品进行分析比对。结果表明,通过使用统一的标准气体和校准方法,2种方法测定CH4标准气体的不确定度均<0.5%,CRDS法的不确定度更低;2种方法测定CH4环境空气样品结果的平均相对误差为0.28%,Z检验法显示,2种方法没有显著性差异,并具有很高的相关性和一致性。提出,对于测量精度和稳定性更高的大气CH4监测领域,建议优先选用CRDS法或经过比对达到同等性能的方法;而对于测量精度和稳定性要求稍低的CH4排放源及周边等监测领域,可以采用GC法。  相似文献   

10.
采用温室气体观测卫星(GOSAT) 傅里叶变换光谱仪(FTS)发布的CO2柱浓度L3级别数据集产品,利用TCCON地基站点的CO2柱浓度数据对卫星遥感数据进行验证,分析中国CO2柱浓度时空变化特征及其影响因素。研究结果表明,GOSAT卫星的CO2柱浓度产品精度较高,线性回归的r2为0.99,线性方程斜率为0.98,平均偏差为0.11 mg/L。中国CO2柱浓度呈现逐年增长的趋势,存在12个月的周期性季节性变化。2010、2020年区域年平均CO2柱浓度分别约为389.30、412.62 mg/L,增长了23.32 mg/L,年平均增长率大约为0.58%。中国区域大气CO2柱浓度的月变化存在明显的时空差异,最大值和最小值分别出现在4月和8月,2020年4月和8月的区域平均值分别为415.09、409.13 mg/L。中国区域CO2柱浓度从东部沿海向西部逐级递减,且呈现明显的季节性变化,夏季高值主要集中在东南部沿海地区,冬季高值主要集中在华北地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号