首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study aims to develop a methodology for the thermal characterization of MSWI fly ash. We performed TGA–DTA and component variation analysis, microstructure transfer of sintered fly ash, as well as leaching toxicity, volatilization ratio and specification transformation of heavy metals as a function of temperature. It is found that content of crystal phases first increases between room temperature and 800 °C and then decreases between 800 °C and 1200 °C, while that of glass phases registers a reverse trend. Fly ash registers a SiO2–Al2O3–metal oxides system and its content of glass phases is around 57%. Increase of sintering temperature between 600 °C and 1200 °C is conducive to the reduction of soluble As, Cd, Cu, Hg, Pb, Ni and Zn, while content of soluble Cr increases as temperature rises from 800 °C to 1200 °C.  相似文献   

2.
In this study, pyrolysis of sugarcane bagasse was performed in fixed bed tubular reactor under the conditions of nitrogen atmosphere, by varying temperature and different particle sizes. The effect of final pyrolysis temperature from 400 to 500°C and the nitrogen flow rate from 50 to 200 cc min−1 on the pyrolysis product yields from sugarcane bagasse have been investigated. The Maximum bio-oil yield obtained is 24.12 wt% at the final pyrolysis temperature of 450°C, N2 flow rate of 50 cc min−1 and particle size of mesh number −8 + 12. The yield of bio-oil decreases with increase in temperature from 450 to 550°C and N2 flow rate from 50 to 200 cc min−1. The various characteristics of pyrolysis oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of pyrolysis oil with a heating value of 37.01 MJ Kg−1 was established as CH1.434 O0.555 N0.004. The results from the pyrolysis show the potential of sugarcane bagasse as an important source of liquid hydrocarbon fuel.  相似文献   

3.
Autoignition temperature tests using the ASTM E659 test method have been conducted for N,N-dimethylacetamide (DMAC) and N,N-dimethylformamide (DMF) in test vessels with volumes of 0.5 l, 5 l, and 12 l. Tests were conducted at three different laboratories yielded good agreement (standard deviation with 5 °C) in all cases except for DMAC in the 0.5 l test vessel (standard deviation of 23 °C). Scaling correlations have been developed for the decrease of autoignition temperature with increasing volume and for increasing values of the vessel volume to surface area ratio. The variations for DMAC are steeper than the literature values for almost all other combustible liquids. Cool flames were observed for DMAC at temperatures as much as 44 °C below the autoignition temperature and for DMF at temperatures as much as 171 °C below its autoignition temperature. The DMF cool flame temperatures in the 5-l and 12-l test vessels are approximately equal to the DMF autoignition temperature in a closed 12-l test vessel. Gas samples taken after the cool flame and hot flame tests reveal the presence of high concentrations of diamines and dimethylamino acetonitrile, and small concentrations of many other partial decomposition/oxidation components.  相似文献   

4.
Swine excreta were dried by boiling via immersion in hot oil. In this method, moisture in the excreta is replaced with oil or evaporated by turbulent heat transfer in high-temperature oil. The dried excreta can be used in an incinerator like low-rank coal or solid fuel. Refined waste oil and B–C heavy oil were used for drying. Drying for 8 min at 150 °C reduced the water content of raw excreta from 78.90 wt.% to 1.56 wt.% (refined waste oil) or 1.62 wt.% (B–C heavy oil) and that of digested excreta from 79.58 wt.% to 3.40 wt.% (refined waste oil) or 3.48 wt.% (B–C heavy oil). The low heating values of the raw and digested excreta were 422 kJ/kg and ?2,713 kJ/kg, respectively, before drying and 27,842–28,169 kJ/kg and 14,394–14,905 kJ/kg, respectively, after drying. A heavy metal analysis did not detect Hg, Pb, Cd, As, and Cr in the dried excreta, but Al, Cu, and Zn, which occur in the feed formula, were detected. Thermogravimetric analysis before and after drying revealed that emission of volatiles and combustion of volatiles and fixed carbon occurred at temperatures of 250–500 °C when air was used as the transfer gas.  相似文献   

5.
The effects of employing activated Al2O3 during the catalytic pyrolysis of waste printed circuit boards (WPCBs) are investigated, focusing on the recycling of light oil. Variations in the pyrolysis process are studied through analysis of the phase distribution, water content and boiling point fractions of the resulting products. Product composition and carbon number distribution are analyzed using gas chromatography techniques. The use of activated Al2O3 increases the light oil fraction and also reduces the quantity of brominated products formed. It was determined that the best yield of light oil and most efficient debromination resulted from catalytic pyrolysis at 600 °C. Applying catalyst-to-feed ratios in the range of 1.0–1.5 also maximizes the yield of light oil. The major oil fraction resulting from catalytic pyrolysis has a boiling point range of 0–250 °C and carbon number range of C6–C9, showing for use as a potential fuel after suitable treatment such as hydrogenation. At a higher catalyst-to-feed ratio of 2.0, activated Al2O3 generates a high proportion of light oil fractions containing a significant quantity of chemicals such as phenol (52.67% at 600 °C), although an overall lower yield of oil is obtained. The oil produced in this manner may also be used as a raw material feedstock for the production of various other useful chemicals.  相似文献   

6.
Biohydrogen production by dark fermentation in a series of batch tests under different environmental control conditions was evaluated to determine the optimal initial cultivation pH and temperature for a continuous-flow kinetic test to validate the kinetic model system. The waste activated sludge (WAS) from fructose-processing manufacturing was used as the model substrate for biohydrogen production. The batch experiments for biohydrogen production were conducted in a 6 l bioreactor. Fifteen batch kinetic tests were investigated when pH was controlled at 6, 7, 8 and 9 as well as the temperature was controlled at 37 °C, 45 °C and 55 °C, respectively. The experimental results indicated that the optimal operational condition for hydrogen production occurred while pH was 7 and temperature was 55 °C with the highest hydrogen production of 7.8 mmol. The optimal recovery time for hydrogen was 25 h in the batch experiments. Furthermore, the kinetic test of biohydrogen production was performed by anaerobic mixed microbial culture in the continuous-flow experiment when pH and temperature was maintained at 7 and 55 °C. Approximately 60% and 7% of substrate solution was converted into acetate and hydrogen, respectively, at the steady state. Roughly only 0.77% and 2.7% of substrate solution was converted into propionate and butyrate, respectively, at a steady-state condition. The experimental and modeling approaches presented in this study could be employed for the design of pilot-scale and full-scale anaerobic biohydrogen fermentors using food-processing waste activated sludge (WAS) as a substrate solution.  相似文献   

7.
Volatile organic compounds (VOCs) are easily evaporated and discharged from everywhere into the atmosphere, especially in various operations of gasoline. The emission of VOCs is always a significant environmental problem, and the control of VOCs pollution has been a hot topic in the field of air purification. In this paper, the condensation separation method for gasoline vapor recovery was investigated and four gasoline vapors of S1–S4 were selected for the sensitivity analysis and optimization of the condensation process, using the Model Analysis Tools from Aspen Plus. Generally, to control VOCs pollution efficiently, both the vapor recovery efficiency and the outlet vapor concentration of the condensation recovery system should be simultaneously considered. Then an optimized three-stage condensation process was proposed, whose condensation temperatures were optimized and designed at 1 °C, −40 °C and −110 °C, respectively. Further, based on the comprehensive consideration of both meeting the more strict VOCs emission standard and ensuring the condensation recovery system work stably and economically, it was recommended that the maximum total vapor recovery efficiencies for S1–S4 should be 99.73%, 99.79%, 99.82% and 99.19%, and the minimum outlet vapor concentrations be 2.87 g/m3, 2.75 g/m3, 3.04 g/m3 and 16.98 g/m3, respectively. Accordingly, the condensation temperature of the copious cooling stage should be set at −130 °C. Moreover, the total cooling duties for the single-stage and three-stage condensation processes were investigated and compared when the condensation temperature of the recovery system ranged from 20 °C to −110 °C. The total cooling duties of the three-stage condensation process for S1–S4 would be saved by 12.23%, 15.68%, 13.96% and 15.65%, respectively. Finally, a three-stage condensation system was developed for the industrial gasoline vapor recovery, which has performed well since its installation.  相似文献   

8.
9.
Accidental gas explosions in industrial equipment are seldom initiated at atmospheric conditions. Furthermore, fuel–air mixtures are generally turbulent due to rotating parts or flows. Despite these considerations, few studies have been devoted to the analysis of explosion properties at conditions of temperature and pressure different from ambient and in the presence of turbulence; therefore, experiments are still needed, even at lab-scale, e.g. for the design of mitigation system as venting devices.In this work, experimental explosion tests have been performed in 5 l, cylindrical tank reactor with stoichiometric methane–air mixtures at initial pressure and temperature up to 600 kPa and 400 K, centrally ignited or top ignited, and with the effect of initial turbulence level by varying the velocity of the mechanical stirrer.  相似文献   

10.
Biodiesel as an alternative fuel for fossil diesel has many benefits such as reducing regulated air pollutants emissions, reducing greenhouse gases emissions, being renewable, biodegradable and non-toxic. In this study, used frying oil was applied as a low cost feedstock for biodiesel production by alkali-catalyzed transesterification. The design of experiments was performed using a double 5-level-4-factor central composite design coupled with response surface methodology in order to study the effect of factors on the yield of biodiesel and optimizing the reaction conditions. The factors studied were: reaction temperature, molar ratio of methanol to oil, catalyst concentration, reaction time and catalyst type (NaOH and KOH). A quadratic model was suggested for the prediction of the ester yield. The p-value for the model fell below 0.01 (F-value of 27.55). Also, the R2 value of the model was 0.8831 which indicates the acceptable accuracy of the model. The optimum conditions were obtained as follows: reaction temperature of 65 °C, methanol to oil molar ratio of 9, NaOH concentration of 0.72% w/w, reaction time of 45 min and NaOH as the more effective catalyst. In these conditions the predicted and observed ester yields were 93.56% and 92.05%, respectively, which experimentally verified the accuracy of the model. The fuel properties of the biodiesel produced under optimum conditions, including density, kinetic viscosity, flash point, cloud and pour points were measured according to ASTM standard methods and found to be within specifications of EN 14214 and ASTM 6751 biodiesel standards.  相似文献   

11.
An ozonation process was performed using a recycled electrochemical ozone generator system. A titanium based electrode, coated with nanocomposite of Sn–Sb–Ni was applied as anode in a laboratory-made electrochemical reactor. A constant flow rate of 192 mg/h of generated ozone was entered to an ozonation reactor to contact with a typical target pollutant, i.e., Rhodamine B (Rh.B) molecules in aqueous solution. Four operational parameters such as: initial dye concentration, pH, temperature and the contact time were evaluated for the ozonation process. Experimental findings revealed that for a solution of 8 mg/L of the dye, the degradation efficiency could reach to 99.5% after 30 min at pH 3.7 and temperature of 45 °C as the optimum conditions. Kinetic studies showed that a second order equation can describe the ozonation adequately well under different temperatures. Also, considering to the importance of process simulation, a three-layered feed forward back propagation artificial neural network model was developed. Sensitivity analysis indicated order of the operational parameter's relative importance on the model output as: time  pH > Rh . B initial concentration > temperature.  相似文献   

12.
The mixture of 3-methyl pyridine (3-picoline) and steam is used in the production of vitamin B3 in the gas phase. The aim of this study was to investigate the influence of inert steam (H2O) on the flammability characteristics of 3-picoline in the manufacturing process. Four practical vapour mixing ratios of 3-picoline/steam mixtures, 5, 10, 30 and 100 vol% 3-picoline, were selected in this study. A series of flammability tests were employed for determining their fire and explosion characteristics. Fire tests H2O: 3-picoline 5,10, 30 and 100 vol% were carried out in a 20-L-Apparatus under simulated conditions of 760 mmHg, 270°C, together with high oxygen concentrations (42 and 21 vol%) used in the real process.The experimental results showed that the safety-related parameters and flammability hazard degrees were all able to be significantly reduced while substantial amount of steam was infused into the 3-picoline/steam system. While the steam proportion was up to 97 vol%, 3-picoline/steam would be non-flammable. As a result, dosing steam to the process is one of the effective methods to prevent the relevant processes from incurring fire and explosion hazards, not to mention its economical benefit.  相似文献   

13.
The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175°C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175°C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k1 = 0.0813 s−1; k2 = 0.0075 s−1, which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent ‘hot spot’ formation within the reactor, which would have cause localised degradation of glucose.  相似文献   

14.
The aim of this work is the study of p-nitrophenol (PNP) removal, as a nitroaromatic compound, using a hybridized photo-thermally activated potassium persulfate (KPS) in a fully recycled batch reactor. Response surface method was used for modeling the process. Reaction temperature, KPS initial dosage and initial pH of the solution were selected as variables, besides PNP degradation efficiency was selected as the response. ANOVA analysis reveals that a second order polynomial model with F-value of 41.7, p-value of 0.0001 and regression coefficient of 0.95 is able to predict the response. Based on the model, the process optimum conditions were introduced as initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 66 °C. Also experiments showed that using thermolysis and photolysis of the persulfate simultaneously, the role of thermolysis is not considerable. A pseudo first order kinetic model was established to describe the degradation reaction. Operational cost, as a vital industrial criterion, was estimated so that the condition of initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 25 °C showed the highest cost effective case. Under the preferred mild condition, the process will reach to 84% and 89% of degradation and mineralization efficiencies, after 60 and 120 min, respectively.  相似文献   

15.
Carbon coated monolith was prepared by sucrose solution 65 wt.% via dip-coating method. Sulfonation of incomplete carbonized carbon coated monolith was carried out in order to synthesize solid acid catalyst. The textural structure characteristics of the solid acid catalyst demonstrated a low surface area and pore volume. Palm fatty acid distillate (PFAD), a by-product of palm oil refineries, was utilized as oil source in biodiesel production. The esterification reaction subjected to different reaction conditions was performed by using the sulfonated carbon coated monolith as heterogeneous catalyst. The sulfonation process had been performed by using vapour of concentrated H2SO4 that was much easier and efficient than liquid phase sulfonation. Total acidity value of carbon coated monolith was measured for unsulfonated sample (0.5 mmol/g) and sulfonated sample (4.2 mmol/g). The effect of methanol/oil ratio, catalyst amount and reaction time were examined. The maximum methyl ester content was 89% at the optimum condition, i.e. methanol/oil molar ratio (15:1), catalyst amount (2.5 wt.% with respect to PFAD), reaction time (240 min) and temperature 80 °C. The sugar catalyst supported on the honeycomb monolith showed comparable reactivity compared with the sugar catalyst powder. However, the catalyst reusability studies showed decrease in FFA% conversion from 95.3% to 68.8% after four cycles as well as the total acidity of catalyst dropped from the value 4.2 to 3.1 mmol/g during these cycles. This might be likely due to the leaching out of SO3H group from the sulfonated carbon coated monolith surface. The leaching of active species reached a plateau state after fourth cycle.  相似文献   

16.
A numerical model is presented which consists of a set of partial differential equations for the transport of heat and mass fractions of eight chemical species to describe the onset of self-ignition and the propagation of smouldering fires in deposits of bulk materials or dust accumulations. The chemical reaction sub-model includes solid fuel decomposition and the combustion of char, carbon monoxide and hydrogen.The model has been validated against lab-scale self-ignition and smouldering propagation experiments and then applied to predictions of fire scenarios in a lignite coal silo. Predicted reaction temperatures of 550 K and propagation velocities of the smouldering front of about 6 mm/h are in good agreement with experimental values derived from lab-scale experiments.  相似文献   

17.
The time that it takes an occupant population to reach safety when descending a stairwell during building evacuations is typically described by measurable engineering variables such as stairwell geometry, speed, density, and pre-evacuation delay. In turn, engineering models of building evacuation use these variables to predict the performance of egress systems for building design, emergency planning, or event reconstruction. As part of a program to better understand occupant movement and behavior during building emergencies, the Engineering Laboratory at the National Institute of Standards and Technology (NIST) has been collecting stairwell movement data during fire drill evacuations of office buildings. These data collections are intended to provide a better understanding of this principal building egress feature and develop a technical foundation for future codes and standards requirements. To date, NIST has collected fire drill evacuation data in eight office building occupancies ranging from 6 to 62 stories in height that have included a range of stairwell widths and occupant densities.While average movement speeds in the current study of 0.48 m/s ± 0.16 m/s are observed to be quite similar to the range of literature values, local movement speeds as occupants traverse down the stairwell are seen to vary widely within a given stairwell, ranging from 0.056 m/s to 1.7 m/s. These data should provide confirmation of the adequacy of existing literature values typically used for occupant movement speeds or provide updated values for future analyses.  相似文献   

18.
A series of six large scale high pressure jet fires were conducted using natural gas and natural gas/hydrogen mixtures. Three tests involved natural gas and three involved a mixture of natural gas and hydrogen containing approximately 24% by volume hydrogen. For each fuel, the three tests involved horizontal releases from 20, 35 and 50 mm diameter holes at a gauge pressure of approximately 60 bar. During the experiments, the flame length and the incident radiation field produced around the fire were measured. The fires also engulfed a 1 m diameter horizontal pipe placed across the flow direction and about halfway along the flame. This pipe was instrumented to measure the heat fluxes to the pipe. The data obtained is compared with previous data obtained for various hydrocarbons at large scale.  相似文献   

19.
The potential to remove Pb(II) ion from wastewater treatment systems using raw and treated maize stover through adsorption was investigated in batch experiments. To achieve this, batch mode experiments were conducted choosing specific parameters such as pH (2–8), dosage concentration (2–30 g L−1), contact time (5–180 min), temperature (20–45 °C) and metal ion concentrations (10–50 mg L−1). Adsorption was pH-dependent showing a maximum at pH value 5. The equilibrium sorption capacities of raw and treated maize stover were 19.65 and 27.10 mg g−1, respectively. The adsorption data fitted well to the Langmuir isotherm model. Kinetic studies revealed that the adsorption process followed pseudo-second-order model. The calculated thermodynamic parameters showed that the adsorption of Pb(II) was spontaneous and exothermic in nature. Consequently, this study demonstrated that both raw and treated maize stover could be used as adsorbents for the treatment of Pb(II) from industrial wastewaters.  相似文献   

20.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号