首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Felton  Adam  Löfroth  Therese  Angelstam  Per  Gustafsson  Lena  Hjältén  Joakim  Felton  Annika M.  Simonsson  Per  Dahlberg  Anders  Lindbladh  Matts  Svensson  Johan  Nilsson  Urban  Lodin  Isak  Hedwall  P. O.  Sténs  Anna  Lämås  Tomas  Brunet  Jörg  Kalén  Christer  Kriström  Bengt  Gemmel  Pelle  Ranius  Thomas 《Ambio》2020,49(5):1050-1064

The multi-scale approach to conserving forest biodiversity has been used in Sweden since the 1980s, a period defined by increased reserve area and conservation actions within production forests. However, two thousand forest-associated species remain on Sweden’s red-list, and Sweden’s 2020 goals for sustainable forests are not being met. We argue that ongoing changes in the production forest matrix require more consideration, and that multi-scale conservation must be adapted to, and integrated with, production forest development. To make this case, we summarize trends in habitat provision by Sweden’s protected and production forests, and the variety of ways silviculture can affect biodiversity. We discuss how different forestry trajectories affect the type and extent of conservation approaches needed to secure biodiversity, and suggest leverage points for aiding the adoption of diversified silviculture. Sweden’s long-term experience with multi-scale conservation and intensive forestry provides insights for other countries trying to conserve species within production landscapes.

  相似文献   

2.
Climatic change and associated global changes are of major interest to foresters, both in terms of forest ecology and of future forest production. Predicting the likely effects of global change on forests is extremely difficult due to the critical lack of information on regional changes in meteorological factors relevant to forests. However, existing models of forest production and forest distribution fail to take adequate account of what is already known. Climate and carbon dioxide concentrations have shown substantial changes over the last 100 years. Although the rate of change is likely to increase, recent proposed and implemented control strategies, together with better climatic models, are tending to suggest that the rate of change will be less than initially thought. This means that past changes may provide an increasingly useful source of information. In particular, information on the impact on forests of both long-term climate change and short-term climatic events is rapidly increasing. Such information should be built into future forest response models.  相似文献   

3.
Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.  相似文献   

4.
The effects of ozone and other photochemical oxidants on individual trees have been studied for several decades, but there has been much less research on the potential effects on entire forest ecosystems. Given that ozone and other oxidants affect the production and subsequent fate of biogenic volatile organic compounds that act as signalling molecules, there is a need for more detailed study of the role of oxidants in modifying trophic interactions in forests. Deposition of fine particulates to forests may act as a source of nutrients, but also changes leaf surface properties, increasing the duration of surface wetness and modifying the habitat for epiphytic organisms, leading to increased risks from pathogens. Even where this pathway contributes a relatively small input of nutrients to forests, the indirect effects on canopy processes and subsequent deposition to the forest floor in throughfall and litter may play a more important role that has yet to be fully investigated.  相似文献   

5.
Benhin JK 《Ambio》2006,35(1):9-16
Despite the important role that tropical forests play in human existence, their depletion, especially in the developing world, continue relentlessly. Agriculture has been cited as the major cause of this depletion. This paper discusses two main theoretical underpinnings for the role of agriculture in tropical deforestation. First, the forest biomass as input in agricultural production, and second, the competition between agriculture and forestry underlined by their relative marginal benefits. These are supported by empirical evidence from selected countries in Africa and South America. The paper suggests a need to find a win-win situation to control the spate of tropical deforestation. This may imply improved technologies in the agriculture sector in the developing world, which would lead both to increased production in the agriculture sector, and would also help control the use of tropical forest as an input in agriculture production.  相似文献   

6.
GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. METHODS: A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. RESULTS AND DISCUSSION: A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. CONCLUSIONS: This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. RECOMMENDATIONS: The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within watersheds using publicly available information. This method can quickly identify discrete locations with relatively precise spatial boundaries (approximately 80 meter resolution) that have a high sheet erosion potential as well as areas where management interventions might be appropriate to prevent or ameliorate erosion.  相似文献   

7.
Carbon stock dynamics was monitored in the Uttara Kannada district, Western Ghats, India, for ten years on eight one-hectare sampling areas belonging to different management and forest categories. The study was initiated in 1984 and the area was monitored until 1994. Our study indicates that, in general, the carbon stock has enhanced during the study period with an average growth of 1.008 t/ha/year. However, there were differences in carbon stocks in different management regimes. The minor forests that are subjected to intense human pressures had a negative growth rate, i.e. 0.237 t/ha/year, while the reserve forests have a carbon assimilation rate of 1.31 t/ha/year. This indicates that human pressure has certainly decreased the carbon accumulation in the forests of Uttara Kannada. Despite the anthropogenic pressure, the minor forests have higher carbon accumulation through recruits as compared to the reserve forests. Thus it is suggested that a management strategy is needed to look into enhancing recruitment patterns in the minor forests which would become future carbon stocks.  相似文献   

8.
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.  相似文献   

9.
Our study explores the nexus between forests and local communities through participatory assessments and household surveys in the central Himalayan region. Forest dependency was compared among villages surrounded by oak-dominated forests (n = 8) and pine-dominated forests (n = 9). Both quantitative and qualitative analyses indicate variations in the degree of dependency based on proximity to nearest forest type. Households near oak-dominated forests were more dependent on forests (83.8%) compared to households near pine-dominated forests (69.1%). Forest dependency is mainly subsistence-oriented for meeting basic household requirements. Livestock population, cultivated land per household, and non-usage of alternative fuels are the major explanatory drivers of forest dependency. Our findings can help decision and policy makers to establish nested governance mechanisms encouraging prioritized site-specific conservation options among forest-adjacent households. Additionally, income diversification with respect to alternate livelihood sources, institutional reforms, and infrastructure facilities can reduce forest dependency, thereby, allowing sustainable forest management.  相似文献   

10.
The temperate forests of the southern hemisphere are the most likely forests to be affected by increased levels of ultraviolet-B (UVB) radiation resulting from reduced ozone. The review describes these forests and then discusses the morphological changes, physiological effects, and protection mechanisms, particularly UV absorbing compounds that result from present day and increasing UVB radiation. Possible avenues for future research are explored.  相似文献   

11.
Lukina N  Nikonov V 《Chemosphere》2001,42(1):19-34
This paper describes the condition of forest ecosystems subjected to smelter pollution in the Kola peninsula. This assessment is based on the parameters of the biogeochemical cycle. The defoliation index was used to delimit three basic forest states: background, defoliating, sparse. Close to the smelter, due to expansion of the area not covered by vegetation, a fourth type of state, so-called "industrial deserts", has been observed. The concentrations of sulphur, copper and nickel in the precipitation in the forests generally declined with distance from the smelter. The defoliating forests are noted for the highest Ca, Mg, K concentrations in the summer precipitation. In sparse forests and industrial deserts a decrease in the Ca, Mg, K concentrations in the summer precipitation in comparison with the defoliating forests, despite the particle emissions, could be attributed to the reduction in forest biomass. The higher levels of soil and soil leachate carbon and acidity in the defoliating forests was due to higher litterfall and to the higher dissolution of fulvic acids by the acidic precipitation. This increase in organic matter levels affects soil cation exchange capacity and cation saturation. The pine trees demonstrated significant changes in the uptake of elements in all types of forests under pollution. Elevated levels of S, Ni, Cu and K and reduced levels of Mg, Mn and Zn were found in the needles of different age classes.  相似文献   

12.
Measuring carbon in forests: current status and future challenges   总被引:30,自引:0,他引:30  
To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.  相似文献   

13.
The use of intensive forestry on part of the forested area in Sweden increases the production of forest biomass and enables an increased use of such biomass to mitigate climate change. However, with increasing conflicting interests in forests and forestry, the success of such a strategy depends on the public acceptance. In this paper, the results of a mail survey show that although a majority of the general public in Sweden supports measures to increase forest growth, they oppose the use of intensive forestry practices such as the cultivation of exotic tree species, clones, and forest fertilization. The acceptance of such practices is mainly influenced by the perceptions of their environmental consequences. Public acceptance was highest for forest fertilization, whereas clone cultivation was the least accepted practice.  相似文献   

14.
We explored effects of severe pollution on sexual reproduction of mountain birch, Betula pubescens subsp. czerepanovii, by counting catkins on sample branches and weighing both somatic and generative structures of both short and long shoots from birches growing at 21 sites around large nickel-copper smelter at Monchegorsk, Northwestern Russia. Proportion of reproducing trees, production of catkins, shoot and catkin weight, as well as the relative difference in weight of somatic structures of generative and vegetative shoots, were generally independent of pollution load; in 2003 birches growing in industrial barrens produced more catkins than birches growing in unpolluted forests. Thus, we found no support for the hypothesis that reproductive allocation should decrease with decrease in environmental capacity. Absence of adverse effects might indicate that long-lasting pollution impact already eliminated the most sensitive individuals from the affected birch populations.  相似文献   

15.
Costs of reforestation projects determine their competitiveness with alternative measures to mitigate rising atmospheric CO2 concentrations. We quantify carbon sequestration in above-ground biomass and soils of plantation forests and secondary forests in two countries in South America-Ecuador and Argentina-and calculate costs of temporary carbon sequestration. Costs per temporary certified emission reduction unit vary between 0.1 and 2.7 USD Mg(-1) CO2 and mainly depend on opportunity costs, site suitability, discount rates, and certification costs. In Ecuador, secondary forests are a feasible and cost-efficient alternative, whereas in Argentina reforestation on highly suitable land is relatively cheap. Our results can be used to design cost-effective sink projects and to negotiate fair carbon prices for landowners.  相似文献   

16.
GOAL, SCOPE AND BACKGROUND: Ozone is the most important air pollutant in Europe for forest ecosystems and the increase in the last decades is significant. The ozone impact on forests can be calculated and mapped based on the provisional European Critical Level (AOT40 = accumulated exposure over a threshold of 40 ppb, 10,000 ppb x h for 6 months of one growing season calculated for 24 h day(-1)). For Norway spruce, the Austrian main tree species, the ozone risk was assessed in a basis approach and because the calculations do not reflect the health status of forests in Austria, the AOT40 concept was developed. METHODS: Three approaches were outlined and maps were generated for Norway spruce forests covering the entire area of Austria. The 1st approach modifies the AOT40 due to the assumption that forests have adapted to the pre-industrial levels of ozone, which increase with altitude (AOTalt). The 2nd approach modifies the AOT40 according to the ozone concentration in the sub-stomata cavity. This approach is based on such factors as light intensity and water vapour saturation deficit, which affect stomatal uptake (AOTsto). The 3rd approach combines both approaches and includes the hemeroby. The pre-industrial ozone level approach was applied for autochthonous ('natural') forest areas, the ozone-uptake approach for non-autochthonous ('altered') forest areas. RESULTS AND DISCUSSION: The provisional Critical Level (AOT40) was established to allow a uniform assessment of the ozone risk for forested areas in Europe. In Austria, where ozone risk is assessed with utmost accuracy due to the dense grid of monitoring plots of the Forest Inventory and because the continuously collected data from more than 100 air quality measuring stations, an exceedance up to the five fold of the Critical Level was found. The result could lead to a yield loss of up to 30-40% and to a severe deterioration in the forest health status. However, the data of the Austrian Forest Inventory and the Austrian Forest Damage Monitoring System do not reflect such an ozone impact. Therefore, various approaches were outlined including the tolerance and avoidance mechanisms of Norway spruce against ozone impact. Taking into consideration the adaptation of forests to the pre-industrial background level of ozone, the AOT40 exceedances are markedly reduced (1st approach). Taking into account the stomatal uptake of ozone, unrealistic high amounts of exceedances up to 10,000 ppb x h were found. The modelled risk does not correspond with the health status and the wood increment of the Austrian forests (2nd approach). Consolidating the forgoing two approaches, a final map including the hemeroby was generated. It became clear that the less natural ('altered') forested regions are highly polluted. This means, that more than half of the spruce forests are endangered by ozone impact and AOT40 values of up to 30,000 ppb x h occur (3rd approach). CONCLUSIONS: The approaches revealed that a plausible result concerning the ozone impact on spruce forests in Austria could only be reached by combining pre-industrial ozone levels, ozone flux into the spruce needles and the hemeroby of forests.  相似文献   

17.
The sustainable use of forests constitutes one of the great challenges for the future due to forests’ large spatial coverage, long-term planning horizons and inclusion of many ecosystem services. The mission of the Future Forests programme is to provide a scientifically robust knowledge base for sustainable governance and management of forests preparing for a future characterized by globalization and climate change. In this introduction to the Special Issue, we describe the interdisciplinary science approach developed in close collaboration with actors in the Future Forests programme, and discuss the potential impacts of this science on society. In addition, we introduce the 13 scientific articles and present results produced by the programme.  相似文献   

18.
The effects of air pollutants on forests around the eastern part of the Gulf of Finland were studied by measurement of the sulphur and calcium content of pine needles and evaluation of the ecological conditions of pine forests. Several parameters for pine trees and their needles were chosen as well as the species composition and condition of epiphytic lichens. Very high pine needle S- and Ca-contents were measured in the vicinity of the Narva and Slantsy plants. In this region both the acid and basic pollutant load is massive, partly neutralizing each other. It is suggested that the total load will, sooner or later, cause unexpected environmental damage. Wide 'lichen desert' areas were detected around Narva and Slantsy. Near the margins of these areas extraordinary epiphytes on pines were observed namely Xanthoria parietina (L.) Th.Fr. and red-coloured green alga Trentepohlia umbrina. They are regarded as indicators of alkaline pollution. The lowest pine needle S- and Ca-contents of the study area were measured in south-eastern Finland. The condition of pine forests and their needles was, however, better on the neighbouring Karelian Isthmus although the species number of epiphytic lichens was very low and the condition of the lichens was poor. It is suggested that these most sensitive indicators of air pollutants are damaged by pollutants from St Petersburg and Narva. Vast virgin forests of the Karelian Isthmus act as pollutant sinks reducing the effect of pollutants on trees. On the Finnish side intensive forest management has been carried on for many decades making forests and trees more sensitive to pollutants.  相似文献   

19.
Heavy metal pollution and forest health in the Ukrainian Carpathians   总被引:2,自引:0,他引:2  
The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils.  相似文献   

20.
Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US forest carbon sequestration average approximately 20 Tg (i.e. 10(12) g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes occur two out of three years across the eastern US. A single storm can convert the equivalent of 10% of the total annual carbon sequestrated by US forests into dead and downed biomass. Given that forests require at least 15 years to recover from a severe storm, a large amount of forest carbon is lost either directly (through biomass destruction) or indirectly (through lost carbon sequestration capacity) due to hurricanes. Only 15% of the total carbon in destroyed timber is salvaged following a major hurricane. The remainder of the carbon is left to decompose and eventually return to the atmosphere. Short-term increases in forest productivity due to increased nutrient inputs from detritus are not fully compensated by reduced stem stocking, and the recovery time needed to recover leaf area. Therefore, hurricanes are a significant factor in reducing short-term carbon storage in US forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号