首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
近年来大气臭氧污染问题凸显,但臭氧前体物及其效应复杂,控制难度大.为探究徐州市臭氧污染特征,掌握臭氧前体物的作用机理,实现多种前体物协同优化控制,本研究基于国控点、省控站点、网格点2018—2021年及2022年4—6月的多要素监测数据进行了全面剖析及减排效应模拟.结果表明:(1)徐州市复合污染变化特征表现为PM2.5波动下降,臭氧污染整体逐年加重的趋势,臭氧作为首要污染物出现时间提前、时间持续变长,以臭氧为首要污染物的超标天数已超过PM2.5;(2)根据臭氧小时变化特征,其日变化呈“单峰型”,臭氧2022年6月峰值时间较2018—2021年6月推后1 h,不同臭氧浓度下源排放强度和光化学反应对臭氧的影响显著,高温时臭氧前体物VOCs浓度明显高于平均值;(3)基于观测的模型(Observation-Based Model, OBM)模拟结果显示,单独减排NOx或VOCs降低臭氧污染难度较大,在徐州地区VOCs与NOx的削减比例不低于1.8∶1才能达到臭氧前体物协同控制的效果;(4)在当前VOCs来源...  相似文献   

2.
结合天气形势,地面观测资料和WRF-CMAQ模式,分析了2017年7月8~15日成都市一次罕见持续O3污染过程的特征及成因,量化了各个物理化学过程对此次污染过程的相对贡献,并通过敏感性实验分析了四川盆地内O3及其前体物的区域传输和本地光化学反应对此次污染过程的影响.结果表明,此次O3持续污染过程主要是因为四川盆地内盛行偏东风,导致盆地东部城市群的O3及其前体物经区域输送到成都及周边地区,加之成都市出现小风、气温升高等气象条件进而形成,属于典型的传输性爆发污染.持续污染形成的主要物理化学机制体现为日间气相化学过程贡献为稳定的正值,加之输送过程贡献出现爆发式升高,进而导致近地面O3小时净增量迅速上升且高达50μg/(m3·h),随之O3浓度迅速响应,产生爆发式增长.此外,敏感性实验结果显示此次成都市O3持续污染的形成受区域输送影响较受本地光化学反应影响更为明显.O3污染爆发前上游地区高浓度O3及其前体物沿流场输送并在成都及周边地区不断积累,导致日间O3浓度不断升高.  相似文献   

3.
受前体物排放和气象因素变化的综合作用,臭氧污染时空特征呈现出明显的演变态势.本文利用2013—2021年广东省国控站监测数据,结合观测长时间趋势分析和机器学习等多种手段,分析了珠三角地区臭氧污染的季节特征演变、季节特征演变的空间差异以及导致其季节演变的原因.结果显示,2013—2021年珠三角地区臭氧污染呈明显的上升态势,其MDA8年平均浓度每年平均上升1.80μg·m-3.秋季是珠三角臭氧污染的频发季节,但不同季节臭氧上升态势存在差异,其中春季臭氧上升趋势最明显(3.1μg·m-3),冬季(2.4μg·m-3)和秋季(2.1μg·m-3)其次,夏季最低(0.98μg·m-3),使得珠三角臭氧污染有向春冬两季扩散蔓延的趋势.不合理的NOx/VOCs减排是导致珠三角臭氧整体往春冬延伸的主导因素.呈现出明显春冬延伸特征的站点多处于珠三角腹部地区,在秋、冬、春季节,珠三角腹部地区多为VOCs控制区.进一步分析还显示,ΔO3/ΔNO...  相似文献   

4.
利用近5a深圳西部城区(大学城)大气臭氧(O3)在线监测数据,结合深圳大学城超级站大气复合污染综合观测,获取了大气O3演变趋势,并探究O3超标日气象条件及其前体物的组成变化以期掌握大气O3超标成因.结果表明,深圳大学城大气O3日最大8h平均体积分数上升速度达1.1×10-9/a,超标率达到6%以上.高温低湿的气象条件更容易促进大气O3生成,高温时光化学反应强烈有利于O3的本地生成,而低湿可能不利于O3的湿去除从而导致污染积累.挥发性有机物(VOCs)不同组分在O3超标日上升幅度(70%~95%)明显高于NOx(28%),且O3高值浓度分布在高VOCs低NOx区域,说明深圳大学城大气O3生成主要受VOCs控制.O3超标日的甲苯与苯比值(T/B)在夜间超过10表明可能存在大量工业排放;而含氧挥发性有机物(OVOCs)在午间(12:00~14:00)的消耗相较于非超标日高出了1倍左右,表明工业活动排放的OVOCs对白天O3生成可能贡献显著.  相似文献   

5.
天津武清大气挥发性有机物光化学污染特征及来源   总被引:7,自引:2,他引:5  
大气VOCs(挥发性有机物)是臭氧的重要前体物之一,研究其光化学污染特征和来源对控制近地面臭氧污染具有重要意义. 于2006年8月10日—9月18日在天津郊区武清采用在线监测的方法,同步观测了VOCs、O3和NO2等气态污染物,以及温度和紫外辐射等气象因子. 对9月10—15日臭氧浓度较高时段VOCs的浓度水平、化学反应活性、臭氧生成潜势和来源进行了分析. 结果表明:天津郊区武清环境空气中VOCs体积混合比平均浓度为24.6×10-9;VOCs主要由烷烃和烯烃组成,机动车排放、轻烃工艺、生物排放、沼气和碳氢溶剂是其重要来源. 根据等效丙烯浓度和MIR方法评估,烯烃对臭氧光化学产生的贡献占主导性地位,其中异戊二烯、丙烯、二甲苯和甲苯是臭氧生成潜势较大的物种. 通过与天津城区比较发现,郊区与城区的大气VOCs不仅组成不同,而且化学活性物种也不同.   相似文献   

6.
为深入探究典型热带海滨城市环境空气臭氧(O3)污染特征与成因,于2019年6~10月在海南省海口市城区站点开展O3及其前体物观测实验,较为全面地分析了O3污染特征,基于观测的模型(OBM)识别了O3生成控制区,分析了O3前体物敏感性,并开展了O3前体物减排效果评估.结果表明:(1)海口市O3污染主要出现在9月和10月,观测期间O3日最大8h滑动平均值范围为39~190μg·m-3,O3日变化呈单峰型,于14:00左右达到峰值.(2)海口市超标日NOx和VOCs浓度高于达标日,前体物浓度的升高是导致O3污染的内在因素,同时O3污染受区域传输影响,污染物主要来自于海口市东北部地区.(3)海口市O3生成处于VOCs和NOx协同控制区.9~10月O3  相似文献   

7.
基于2021年6~8月新乡市市委党校站点观测的挥发性有机物(VOCs)、常规空气污染物和气象参数,采用基于观测的模型(OBM)对臭氧(O3)超标日的O3敏感性和前体物的管控策略进行了研究.结果发现,O3超标日呈现高温、低湿和低压的气象特征.在臭氧超标日,O3及其前体物的浓度均有上升.臭氧超标日的VOCs最高浓度组分为含氧挥发性有机物(OVOCs)和烷烃,臭氧生成潜势(OFP)和·OH反应性最大的VOCs组分为OVOCs.通过相对增量反应性(RIR)分析,新乡6月O3超标日臭氧生成处于VOCs控制区,7月和8月处于VOCs和氮氧化物(NOx)协同控制区,臭氧生成对烯烃和OVOCs最为敏感.6月各前体物的RIR值在一天中会发生变化,但始终保持为VOCs控制区;7月和8月在上午为VOCs控制区,中午为协同控制区,下午分别为协同控制区和NOx控制区.通过模拟不同前体物削减情景,结果表明削减VOCs始终有利于管控臭氧,而削减NOx  相似文献   

8.
孙玉环  杨光春 《中国环境科学》2021,40(12):5531-5538
应用三维空气质量模型(Model-3/CMAQ)和积分过程速率(IPR)分析工具对2017年7月22~31日夏季4次台风持续影响下中山市7月首次出现的持续6d的O3污染事件进行了详细分析,识别了O3 8h浓度最大值时段主导的大气物理过程和大气化学过程,并计算了不同源、汇过程对本地O3浓度的贡献.研究结果表明,污染时段化学过程对O3的源贡献高于非污染时段,化学过程贡献增加,说明光化学反应过程更加活跃;台风带来的外来气团经过上风向高污染物排放区域时,化学过程贡献显著上升,与非经过高污染物排放区域相比,污染时段的化学过程对中山市O3源过程的浓度贡献高2.4%~6.5%;污染时段,水平输送对中山市大气O3源过程的浓度贡献在56.6%~92.6%之间.因此,污染期间强化本地排放源的管控,减少O3生成贡献的同时,结合区域气团路径分析,精准识别污染协同管控区域,上风向污染物高排放区域实施协同减排措施,实现区域联防联控.  相似文献   

9.
紫外光和活性炭对有机物臭氧化的协同催化作用   总被引:5,自引:0,他引:5  
以城市二级出水中微量有机污染物为处理的目标物质,通过静态试验分别考察了不同催化条件下臭氧对水中有机污染物的降解效果.结果表明:协同催化反应器对水体在254 nm处紫外吸光度(E254)的去除率达87.40%,对CODCr的去除率可达59.79%,对臭氧的利用率可达到91.4%,因此,254 nm紫外光和活性炭对水中微量有机污染物的臭氧化过程具有协同催化作用,并大大提高了系统对臭氧的利用率;受OH-影响,碱性条件下O3/UV/C工艺对CODCr和E254的去除效果好于中性和酸性条件;不同自由基捕捉剂对臭氧化过程的影响证明,在紫外光和活性炭的协同催化作用下,臭氧分解出以羟基自由基为主的多种氧化性自由基,因此水中有机污染物的氧化降解是多种自由基反应的结果.   相似文献   

10.
了解O3污染的垂直分布对于充分理解O3在大气中的扩散和输送具有重要意义.本研究利用最优插值法实现了高塔与激光雷达O3观测数据的融合,并基于垂直观测融合数据对2021年10月广州市一次O3污染过程进行分析,结果表明:(1)不同时刻的O3浓度均大致呈现出随高度上升先升后降的变化趋势,平均相对高值主要分布在300~500 m,最高值出现在400 m附近.(2)结合边界层高度分析可知,白天的O3生成和扩散基本均在边界层以内进行,夜间普遍存在O3残留问题,而在污染日尤其显著,表明白天光化学反应生成的高浓度O3是夜间残留层中O3的来源.(3)污染期间,不同大气污染物形成了不同的垂直分层,具体表现为较高浓度的PM2.5和NO2在中、低层积累,而高层(约200~600 m)则维持高浓度O3的污染垂直分布结构.推测原因在于南北气流对峙及夜间稳定...  相似文献   

11.
挥发性有机物(VOCs)是大气臭氧(O3)的重要前体物,珠三角地区夏、秋季O3污染频发,科研人员在其城市地区已开展多项VOCs观测研究,但对珠三角背景地区的VOCs组成和来源认识不足.本研究于深圳市东部沿海地区的大鹏半岛开展VOCs多点位同步监测,初探该背景区域VOCs的污染特征.结果表明,整个区域VOCs浓度水平呈现出西高东低的空间分布;观测期间平均总VOCs(TVOCs)浓度为27.4×10-9(体积分数,下同),最主要的组分是含氧有机物(OVOCs)、烷烃和卤代烃,浓度合计占80.4%;OVOCs、芳香烃和烯烃是臭氧生成潜势(OFP)和羟基自由基损耗速率(L·OH)占比最高的3类组分,总OFP为86.5×10-9,合计L·OH为8.6 s-1,需重点关注乙醛、异戊二烯、丙醛、正丁醛和间/对-二甲苯等高活性物种.整个区域气团较为老化,受到来自东北方向气团区域传输的影响.解析出VOCs主要的5个来源为车辆排放、溶剂和其他工业源、二次...  相似文献   

12.
为揭示湖北省PM2.5和臭氧(O3)复合污染演变特征,基于湖北省17个地市的空气质量国控点和武汉市大气超级站组分监测数据,全面分析湖北省17个地市2015—2020年PM2.5和O3的时空变化特征及相关关系,探讨PM2.5和O3协同效应的成因机理. 结果表明:①2015—2020年,湖北省PM2.5显著改善,平均降幅为4.7 μg/(m3·a),但冬季负荷仍较高,主要集中于中部地区;O3污染凸显,平均增幅为3.8 μg/(m3·a),污染集中在4—10月的暖季,东部地区最严重,近两年超标天数已与PM2.5相当. ②湖北省PM2.5和O3关联日趋密切,协同效应显著,日评价指标显示夏季二者呈显著正相关(相关系数为0.57),近两年当PM2.5浓度≤50 μg/m3时,相关系数高达0.63;冬季PM2.5浓度与Ox(O3+NO2)浓度呈正相关,尤其2020年东部城市二者相关性高达0.46,显示大气氧化性对PM2.5二次污染的重要性. ③以武汉市为例,归纳PM2.5和O3复合污染的成因,暖季低PM2.5背景下,高温、中等湿度和弱风速的气象条件以及VOCs和NOx等前体物的高浓度排放,使得受VOCs主控的光化学反应加剧,易造成O3污染,从而加强PM2.5二次生成;冬季高的大气氧化性,叠加不利气象条件,促进颗粒物的二次生成,导致重污染时PM2.5组分以硝酸盐等二次无机组分为主. 研究显示,湖北省PM2.5和O3协同控制重点为,在保持现有NOx控制力度基础上强化VOCs控制,遏制暖季和东部区域O3浓度上升,加强冬季和中部PM2.5治理.   相似文献   

13.
为了解黄河三角洲区域细颗粒物(PM2.5)和臭氧(O3)大气复合污染特征和成因,本文利用2021年和2022年夏秋季黄河三角洲中心城市东营市、滨州市的挥发性有机物(VOCs)连续观测数据及常规污染物数据,识别对O3和二次有机气溶胶(SOA)生成有显著贡献的VOCs物种并对VOCs进行来源解析,同时利用基于观测的化学盒子模型探讨O3的生成敏感性.结果表明:(1)黄河三角洲地区PM2.5和O3浓度“双高”的大气复合污染主要出现在秋季,夏季东营市和滨州市首要污染物均为O3,距离入海口越远的站点O3超标天占比越高;秋季东营市和滨州市首要污染物均为PM2.5,且超标情况相近.(2)烯烃和含氧挥发性有机物(OVOCs)对臭氧生成潜势(OFP)的贡献大,优势物种为乙醛;芳香烃对SOA生成潜势(SOAFP)的贡献大,优势物种为1,2,3-三甲苯.(3)东营市夏秋季O3生成均处于VOCs...  相似文献   

14.
定量输送过程对大气污染事件的贡献程度一直是目前区域大气污染防控的突出难点和重要需求.对此,基于WRF-Chem模式对佛山典型区域性臭氧(O3)污染事件开展模拟,应用四维通量法分别量化周边区域对佛山市臭氧及其前体物的输送通量,厘清臭氧直接输送和前体物输送的贡献,发现周边区域对佛山市输送的O3总通量平均值为120.3 t·h-1;挥发性有机化合物(VOCs)总通量平均值为30.2 t·h-1;其对应的臭氧生成潜势(OFP)为114.8 t·h-1.通过统计各O3污染事件的输送通量,发现污染期间输入佛山O3通量最大的城市为广州(贡献率为44%);输入VOCs通量最大的城市为肇庆(贡献率为48%).分析输送VOCs排放导致的O3生成潜势发现含氧挥发性有机物(OVOCs)对OFP的贡献最大,在“最大输入事件”中占比为47%.甲醛、二甲苯、醛类、丙酮和苯酚类等OVOCs和芳香烃是对OFP贡献前5的物种,贡献量占总OFP的50...  相似文献   

15.
深圳市夏季臭氧污染研究   总被引:9,自引:5,他引:4  
以2009年8月为例分析了深圳市夏季臭氧污染情况及污染气象特征,基于二维空气质量模式对臭氧污染控制进行数值模拟. 结果表明:深圳市8月各监测点均存在臭氧超标现象,污染形势严峻;副热带高压控制和热带气旋外围下沉气流是造成夏季出现高浓度臭氧的主要天气过程,此时大气边界层混合层高度在500~800 m,且近地面风速约在5 ms以内,不利于污染物扩散;臭氧的生成受前体物挥发性有机物(VOC)和氮氧化物(NOx)排放的共同影响,其中VOC排放的影响较大,深圳市臭氧控制应以降低VOC排放量为重点,模拟得出对VOC和NOx按25∶1~40∶1的比例协同减排可有效降低臭氧污染.   相似文献   

16.
基于2018年浙江省嘉兴市14个环境国控站点的O3历史资料与气象要素,研究O3与气象要素的关系,并结合差分吸收臭氧雷达的垂直臭氧探测资料,分析近地层O3廓线变化特征.结果表明,嘉兴地区发生高浓度O3污染的关键气象要素为24~36℃的大气温度和36%~77%的相对湿度,24℃以上的大气温度与77%以下的相对湿度可作为启动预警O3污染的气象指标.差分吸收臭氧雷达监测结果显示,无论O3超标天与清洁天,在垂直方向上其浓度随高度先升后降,在600~800m范围出现峰值;O3污染时段,在中午到午后低空形成持续向下的O3输送带,这种低空O3与地表O3的叠加机制加重地表O3污染程度,导致地表O3超标与低空高浓度相伴出现;其廓线日变化规律表现出800m以下浓度在夜间和凌晨梯度不显著,日出后近地层O3随时间快速增加,中午和午后持续高值,傍晚随时间逐渐下降的特征.后向轨迹分析表明,10,500,1000m高度层的气流后向轨迹聚类有相似性,500m处沿闽浙海岸线的轨迹簇对应O3较10m处来自海上的轨迹簇高,这与500m处前体物输送堆积和紫外线辐射增强有关.污染过程近地层气流来向紧贴地面,但中高层有明显下沉气流使得O3前体物在500m附近堆积,是造成2个典型污染过程中垂直方向上O3高值出现在500m左右的原因之一.  相似文献   

17.
基于2018年浙江省嘉兴市14个环境国控站点的O3历史资料与气象要素,研究O3与气象要素的关系,并结合差分吸收臭氧雷达的垂直臭氧探测资料,分析近地层O3廓线变化特征.结果表明,嘉兴地区发生高浓度O3污染的关键气象要素为24~36℃的大气温度和36%~77%的相对湿度,24℃以上的大气温度与77%以下的相对湿度可作为启动预警O3污染的气象指标.差分吸收臭氧雷达监测结果显示,无论O3超标天与清洁天,在垂直方向上其浓度随高度先升后降,在600~800m范围出现峰值;O3污染时段,在中午到午后低空形成持续向下的O3输送带,这种低空O3与地表O3的叠加机制加重地表O3污染程度,导致地表O3超标与低空高浓度相伴出现;其廓线日变化规律表现出800m以下浓度在夜间和凌晨梯度不显著,日出后近地层O3随时间快速增加,中午和午后持续高值,傍晚随时间逐渐下降的特征.后向轨迹分析表明,10,500,1000m高度层的气流后向轨迹聚类有相似性,500m处沿闽浙海岸线的轨迹簇对应O3较10m处来自海上的轨迹簇高,这与500m处前体物输送堆积和紫外线辐射增强有关.污染过程近地层气流来向紧贴地面,但中高层有明显下沉气流使得O3前体物在500m附近堆积,是造成2个典型污染过程中垂直方向上O3高值出现在500m左右的原因之一.  相似文献   

18.
姜华  常宏咪 《环境科学研究》2021,34(7):1576-1582
为揭示我国近地面臭氧的污染特征,甄别导致高浓度臭氧形成的关键影响因素,该文在探究我国重点区域近年来O3污染特征的基础上,对O3污染成因进行了初步分析.结果表明:①近年来我国O3污染呈缓慢上升态势,2019年夏季异常高温、干旱的极端天气导致O3污染偏重.京津冀及周边地区等重点区域O3浓度明显高于欧美等发达国家和地区.②从时间上看,我国O3污染主要出现在夏季及其前后,O3浓度峰值一般出现在午后.从空间上看,O3污染主要集中在京津冀及周边、汾渭平原和苏皖鲁豫交界地区,其次是长三角和珠三角区域,成渝和长江中游地区O3污染也逐渐凸显.我国O3污染程度主要以轻度污染为主,重点区域O3和PM2.5污染时空分异性特征明显.③前体物方面,我国NOx和人为源VOCs的排放量总体处于高位,京津冀及周边地区和长三角为全国NOx和VOCs排放强度较大的区域.近地表大气O3形成机理复杂,O3浓度与前体物VOCs和NOx均呈复杂的非线性响应关系.气候变化和气象因素对O3污染影响显著,O3及其前体物在区域和城市之间存在相互输送影响.研究显示,我国臭氧污染形势严峻,未来针对臭氧污染防控应加强对多时空尺度下不同区域臭氧污染的形成机理与主导因素的研究.   相似文献   

19.
2019年在珠三角典型产业重镇佛山市狮山镇在线监测大气挥发性有机化合物(VOCs),并开展大气VOCs污染特征、臭氧生成潜势(OFP)及来源贡献分析.观测期间共测得56种VOCs物种,总挥发性有机物(TVOCs)体积浓度为(39.64±30.46)×10-9,主要组成为烷烃(56.5%)和芳香烃(30.1%).大气VOCs在冬季和春季浓度较高.VOCs各组分呈“U”型日变化特征,污染时段的日变化幅度明显大于非污染时段.相对增量反应活性(RIR)结果表明研究区域的O3生成处于VOCs控制区.2019年VOCs的OFP为107.40×10-9,其中芳香烃对总OFP贡献最大(54.6%).OFP浓度最高的10种VOCs占总OFP的80.3%,占TVOCs体积浓度的59.9%,高反应活性的VOCs物种在研究区域具有较高的大气浓度,应重点控制.正交矩阵因子分析模型(PMF)来源解析结果表明,溶剂使用源(42.4%)和机动车排放源(25.8%)是研究区域2019年大气VOCs的主要来源,其次为工业过程源(14.6%)、汽油挥发(7.9%)和天然源(1.7%),控制上述源的VOCs排放是缓解该地区臭氧污染的有效策略.  相似文献   

20.
北京市郊区夏季臭氧重污染特征及生成效率   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究北京郊区夏季O3(臭氧)重污染过程特征及O3生成的光化学敏感性,基于2016年夏季在北京郊区开展的针对O3及其相关污染物的强化观测试验(7月23日—8月31日,共计40 d),分析了观测期间O3浓度[以φ(O3)计]变化特征、O3重污染过程主控因素与O3敏感性化学特征.结果表明:观测期间φ(O3)超标时有发生,最大小时φ(O3)为151.1×10-9,其中有15 d的φ(O3)最大8 h滑动平均值(O3-max-8h)超过了GB 3095—2012《环境空气质量标准》二级标准限值,占观测天数的37.5%;不同O3重污染过程成因有所不同,城市烟羽传输的污染物对郊区O3重污染过程影响显著(观测期间臭氧重污染过程:过程1,7月27—29日;过程3,8月9—11日;过程4,8月16日;过程5,8月21—24日),区域光化学污染对郊区O3重污染过程也有贡献(观测期间O3重污染过程2:8月4—6日);结合后向气流轨迹进一步辅助说明了不同重污染过程中O3的来源不同.研究还发现,观测区域存在反“周末效应”现象,说明观测区域周末受人为影响较为明显;基于观测数据计算的OPE(O3生成效率)分析了O3光化学敏感性表明,在有OPE值的22 d内NOx控制区和VOCs控制区出现的概率(41%)相等,即观测区域O3对NOx和VOCs均敏感;此外还发现,在O3重污染过程中光化学敏感性会随其反应进程发生改变,由NOx控制区逐渐转变为VOCs控制区.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号