首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
江苏省一次重霾污染天气的特征和机理分析   总被引:20,自引:2,他引:18       下载免费PDF全文
利用PM10, SO2,O3,NH3, NOx,CO等6种大气成分浓度数据、常规气象观测数据和天气图资料,结合HYSPLIT4后向轨迹模式,对2008年10月28~30日发生在江苏省的一次大面积重霾污染天气的特征和成因进行了综合分析.结果表明,此次重霾污染天气过程观测到的PM10, NOx,CO最大地面浓度分别达到0.553, 0.170, 2.738mg/m3,水平能见度达到1km以下.其中城市中CO和NOx浓度较郊区高,而SO2和O3则较低.该污染事件与大范围秋收秸秆集中燃烧,造成大量污染物排放有密切关系.平稳的高空环流形势、暖平流、地面高压场分布为重霾污染天气的发生、发展提供了有利的气象条件,地面表现为稳定的大气层结、静小风和低湿环境,非常不利于污染物的扩散.后向轨迹计算分析表明,造成此次重霾污染天气的气团主要来自河南中东部、苏北和安徽等重要产粮地区,长距离输送对区域霾污染产生重要影响.  相似文献   

2.
基于无人机探空和数值模拟天津一次重污染过程分析   总被引:4,自引:4,他引:0  
污染发生在边界层中,边界层热力和动力垂直结构对重污染天气形成有显著影响.本文基于无人机探空、地基遥感观测和数值模式,开展天津地区2019年1月10~15日重污染过程期间边界层垂直结构及污染成因分析,以期加强北方沿海城市边界层过程对重污染影响规律认知,提升重污染天气预报预警准确率.结果表明:大气温度层结对重污染天气形成、持续和消散有显著影响,此次过程伴随逆温层的发展和消散,PM2.5高浓度区白天向大气上层发展,高度可达300 m以上,夜间向近地面压缩,高度在100 m左右;雾天气出现并在白天维持,改变了边界层垂直结构特征,雾顶逆温的持续存在抑制了污染物向大气上层扩散,使得白天湍流垂直混合过程贡献明显下降,导致近地面重污染天气维持和发展;过程期间区域输送贡献率为66.6%,边界层垂直结构与重污染天气区域输送密切相关,区域污染物输送高度主要出现在边界层顶部以及雾顶逆温层以上的大风速层处,且随着边界层和雾顶抬升高度的变化,通过下沉运动影响地面,形成北部弱高压天气控制下静稳天气区域输送;边界层垂直结构影响冷空气对空气质量的改善效果,S3阶段雾顶的强逆温导致冷空气无法通过湍流切应力传导到地面,在高低空存在明显的风速差,冷空气影响地面时间延后,作用减弱,重污染天气无法彻底缓解.  相似文献   

3.
为探究雾-霾过程的边界层特征,选取天津市2019年12月7~10日一次严重的雾-霾典型过程,采用常规自动气象站资料、环境小时浓度资料、以及微波辐射计、风廓线雷达、气溶胶激光雷达等多种观测资料及WRF-Chem源追踪方法对此次污染过程进行综合分析. 结果表明,此次雾-霾过程可明显分为雾生成、雾与霾交替、霾、霾消散等4个阶段;雾-霾天气与大气温度层结密切相关,伴随着逆温生成,相对湿度和液态水含量最大增长速率分别达13.44%/h和0.013g/(m3·h),呈爆发性增长,相对湿度快速增至92%,微波辐射资料可较好预报雾的生成;雾与霾交替出现阶段雾天气改变了边界层结构,雾层内大气呈中性状态,相对有利于污染物在雾区内扩散,PM2.5高浓度主要出现在边界层400m以下,雾顶持续逆温抑制了污染物向上层大气扩散,造成雾区内污染物浓度加重,地面PM2.5质量浓度为135~223μg/m3,维持中度-重度污染;雾-霾天气与垂直风场有较好的对应关系,雾与霾交替出现阶段存在低风速和较大风速(西南风带来充沛水汽)两种有利于雾维持的情况,雾顶逆温层以上风速为6~12m/s,雾层内为1~2m/s,雾的存在不利于近地面空气质量的改善;此次雾-霾过程天津本地源排放贡献为36.1%,区域输送贡献为63.9%,整个过程表现出明显的区域输送特征.  相似文献   

4.
利用常规气象观测资料、空气质量监测资料、再分析资料和数值模式资料,分析了2014年2月20-26日京津冀地区持续重污染天气过程的环流背景、气象要素特征、静稳天气条件和传输条件.结果表明:2月20-26日,亚洲东部受弱高压脊控制,京津冀及周边地区位于地面高压后部,等压线较为稀疏,气压梯度小,造成地面风速较小;与此同时,混合层高度低,通风系数小和逆温存在,构成重污染天气出现和维持的气象条件,均不利于大气中污染物和水汽的垂直和水平扩散.静稳天气指数对于重污染天气有一定的指示意义,高静稳天气指数通常对应高PM2.5浓度,且二者变化趋势一致性高;2月20-26日静稳天气指数总体上大于2014年1-3月其他几次污染过程,且在高位长时间维持,造成此次污染过程更严重.此外,传输条件也是京津冀重污染天气的主要成因:地面高压西侧的偏南或偏东气流有助于污染物和水汽向京津冀地区输送和聚集,使能见度进一步降低、污染物浓度进一步升高.  相似文献   

5.
2014年河北中南部两次重霾天气成因分析   总被引:4,自引:0,他引:4  
利用河北省环保局环境监测站提供的污染物浓度数据及常规气象观测数据、NCEP再分析资料,结合HYSPLIT4.9后向轨迹模式,对2014年10月上旬发生在河北省的2次大范围的重霾天气特征和成因进行综合分析.结果表明,这2次重污染天气过程PM2.5地面浓度最大值出现在邢台,为507μg/m3,水平能见度不足1km.均压场的分布和较为平稳的高空形势为2次霾天气提供了有利的气象背景.高湿,静小风以及较低的混合层高度不利于污染物扩散,是导致这两次重污染天气持续的主要原因.结合卫星火点及污染物来源分析表明,河北南部及周边省份的秸秆燃烧加重了第2次过程的污染,污染气团的输送对区域性重霾天气产生重要影响.  相似文献   

6.
为探究沈阳地区重污染天气成因,文章利用地面、高空气象观测资料、风廓线雷达资料、NECP再分析资料以及大气污染物监测资料,对2019年3月1~6日沈阳地区出现的一次持续性重污染天气过程,探讨了大气污染物质量浓度、地面气象要素变化特征、大气环流配置与外来输送等特征。结果表明,均压场、地面风场弱及辐合、高温高湿是本次重污染天气出现的原因;逆温层结建立、大气垂直运动差,造成污染加剧;来自京津冀东部地区和辽宁中南部地区的PM2.5外来输送对本次污染也有影响。  相似文献   

7.
文章选取2016年3月28日-4月4日(积累型)及2016年1月18-21日(输送型)两次霾天气过程,分析福建省沿海典型霾天气过程特征和成因结果表明:积累型过程持续时间长,福建沿海受地面倒槽暖区天气形势控制,不利于污染物扩散,ρ(PM_(2.5))积累升高导致霾天气出现,受到较高ρ(PM_(2.5))和相对湿度的共同影响,能见度最低降至2 km以下,从霾生成、维持到消散具有增温、增湿、风速小的特点,大气垂直结构中出现逆温层更加不利于污染物扩散,加剧霾的严重程度。输送型霾天气过程持续时间较短,受东北冷涡和高空槽影响,低层PM_(2.5)受东风回流影响输送至福建省沿海,导致福建省沿海自北而南出现霾天气,在污染物输送过程中,大气垂直结构中出现低层逆温不利于污染物向地面输送,会延迟霾天气出现的时间。  相似文献   

8.
鲜有出现空气质量问题的北方沿海城市青岛近年来也频频出现重污染天气. 2014年1月青岛市总计出现7 d重污染天气,其中1月15-18日是持续4 d的PM2.5重污染,其余的则分别出现在1月6日、11日和30日.为了获得气象条件对持续重污染天气发展、维持和消除的影响机制,利用激光雷达、大气稳定度仪探测数据以及地面、高空气象观测和空气质量监测数据,重点分析了1月15-18日持续重污染期间青岛市大气边界层气象要素的时间和空间特征.结果表明,2014年1月影响青岛冷空气势力弱、青岛近地面低于3 m/s的风速不利于污染物扩散,66%以上的相对湿度有利于污染物浓度增大.在污染源稳定的背景下,气象要素的差异性导致了污染物浓度时空分布的差异.在持续的弱偏北风下污染物浓度居高不下;在偏南风影响下,污染物浓度趋于下降.边界层内存在高层干冷弱北风和低层暖湿弱南风的风切变、稳定层结、低层相对湿度为70%的高湿大气以及交替出现的近地面南北风是此次重污染持续的主要原因.大气边界层高度变化对污染物浓度具有6 h左右的延迟影响;而低边界层高度、大稳定度因子,低云的存在和较高的污染物浓度之间具有较好的一致性变化趋势.当近地面温度升高、相对湿度减小以及增大的偏南风和存在弱不稳定层结时,有利于提高青岛局地大气扩散能力.   相似文献   

9.
采用污染物浓度监测数据、气象数据和大气化学模式WRF-CHEM分析天津地区海风对大气污染物浓度的影响.结果表明:天津地区东部沿海的空气质量优于西部内陆及城市中心.在天津地区污染天气高发的秋冬季,海风对污染物浓度起到了稀释作用,所以海风有利于天津地区大气污染的缓解,并且对城郊污染物浓度的影响相对较大,弱气压场形势下有海风存在相对于无海风时PM_(2.5)、PM_10和O3的日均浓度减幅分别为14.4μg/m~3,22.9μg/m~3和8.9μg/m~3.2015年1月4日海风过程的实例分析表明海风锋可将沿海的部分大气污染物输送至所经过的内陆地区,所以处于海风锋前的地区污染物浓度存在短暂的小幅上升,移至海风锋后部后污染物浓度呈下降趋势,市区的PM_(2.5)小时浓度由342μg/m~3上升为399μg/m~3,而后再呈下降趋势,降至160μg/m~3左右.海风有利于天津地区大气污染物的扩散,既将污染物向海风的下游方向输送,又增强了污染物的垂直扩散能力.此次过程影响范围较广,使得天津地区的大气污染得到了缓解,但并没有使大气污染物消散.  相似文献   

10.
2018年11月底—12月初南京及周边地区发生一次大范围持续性霾污染,利用南京市空气质量监测资料、颗粒物成分逐时观测资料、南京站探空资料等,结合天气学诊断分析、后向轨迹模拟和聚类分析等方法,分析此次重霾事件的污染特征和气象因素.结果表明,此次重霾事件具有峰值浓度高、持续时间长、波动较明显等特点.污染时段PM2.5浓度变化分为3个阶段,平均浓度为114.7 μg·m-3,整体达到中度污染.重霾期间南京市大气环境处于富氨条件,颗粒物整体偏酸性,移动源排放比重高于固定源,PM2.5主要成分的存在形式为硫酸铵、硝酸铵和其他硝酸盐.本次重霾事件中气象条件对污染物的输送和累积影响显著,在PM2.5浓度极端事件发生期间,均有各气象要素与PM2.5浓度同步变化.高PM2.5浓度与对流层低层增暖增湿、弱的西南风相对应.重霾事件的主要天气成因是冬季东部地区出现大面积稳定且持久的均压场,南京及周边地区近地面中高层污染物主要由西北和华北地区输送而来,低层污染物主要来自于本地源排放累积.动力条件和热力条件的相互配合,近地面受高压影响形成暖平流逆温层,且易形成下沉气流,使重霾天气持续发展.  相似文献   

11.
2016冬季京津冀一次持续重度霾天气过程分析   总被引:1,自引:1,他引:0  
毛曳  张恒德  朱彬 《环境科学》2021,42(8):3615-3621
2016年12月16~21日我国京津冀地区发生了一次持续重度霾天气过程.为了进一步加深对霾的认识和提高对霾的分析预报能力,利用多种资料,对此次重度霾天气过程的环流背景和气象要素等进行了综合性分析.结果表明,此次过程持续时间长,污染强度大,影响范围广,能见度低,以外来输送为主,气溶胶主要分布在600 m以下高度,有一定的极端异常性,静稳天气指数与空气质量指数有较好的对应关系;京津冀地区高空受高压脊前的纬向环流控制,维持偏西气流,冷空气活动弱,以下沉气流为主,水汽含量较低,高空云量较少,低空有暖脊北伸,地面位于高压东南部,受均压场控制,气压梯度较小,受偏南风影响,污染物易于堆积;地面静小风,相对湿度较高,混合层高度较低,不利于污染物的水平和垂直扩散.  相似文献   

12.
通过对气候变暖和沈阳城市的发展造成沈阳城市热岛增强并加重大气污染的现状分析,提出通过增加绿化面积等措施,可将沈阳的灰霾日数控制在每年60d左右,还能够降低城市温度,增加空气湿度,提高人体舒适度并促进经济发展。  相似文献   

13.
Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event.  相似文献   

14.
2008年10月28~29日南京及周边地区发生了一次严重的空气污染事件,PM10、CO、SO2等大气污染物浓度急剧增高.本文综合利用地面空气污染监测资料、卫星遥感火点监测资料、气象观测和NCAR/NCEP再分析资料及气流后向轨迹模拟,分析了该次污染事件发生的天气条件和大气边界层特征以及大气污染物的来源、输送路径.结果表明,苏中、苏北地区秸秆焚烧产生的大气污染物向南京及周边地区输送,并结合不利于污染物扩散的天气形势和边界层条件,即:均压场结构、500hPa以下弱的垂直速度、涡度和散度、较低的边界层高度及逆温层的存在,以及地形因素是导致这次大气污染事件的主要原因.  相似文献   

15.
长江三角洲冬季一次低能见度过程的地区差异和气象条件   总被引:1,自引:0,他引:1  
祁妙  朱彬  潘晨  苏继锋 《中国环境科学》2015,35(10):2899-2907
采用NCEP再分析资料、MICAPS地面、高空气象资料以及国家环保部空气质量监测资料,对2014年2月20~22日长江三角洲地区一次低能见度过程地区差异和气象条件进行了分析.天气形势分析表明,长三角地面处在高压的控制下,地面风速较小,使污染物积累,有利于低能见度(雾-霾)的形成和维持.根据不同区域的雾、霾分布和日变化特征,将长江三角洲地区分为3个子区域:I区为江苏大部(雾霾混合型),II区为上海及其周边(霾类型),III区为浙江大部(雾类型),该区域白天能见度较高,夜间能见度较低的特征是由湿度因子造成的.影响I区能见度变化的主要原因是:热力原因:大气对流层低层的层结稳定;湿度原因为:空气较湿润,气溶胶粒子吸湿性增长;动力原因主要是垂直方向和水平方向的大气扩散能力弱;污染因子对能见度变化的影响较小.影响II区能见度变化的主要原因是PM2.5浓度高导致的污染,热力因子、湿度因子和动力因子对能见度的变化影响很小.影响III区能见度变化的热力原因是:大气对流层低层层结稳定、近地面存在逆温;湿度原因是因为:空气较湿润,气溶胶粒子吸湿性增长;动力原因是因为边界层高度较低导致的垂直扩散能力较差.各个区域的气象因子解释方差的计算结果表明:I区湿度因子和动力因子对能见度的影响更大,III区.湿度因子对能见度的影响更大.  相似文献   

16.
利用WRF-Chem模式对2015年12月21—23日南京一次重霾污染过程进行模拟.基于合理的模拟评估,采用大气传输通量计算法,着重分析了此次霾污染过程中模拟的南京地区PM_(2.5)的传输收支特征,以及周边地区大气污染物传输对南京市PM_(2.5)变化的贡献.结果表明,此次霾污染过程中,本地源与外来源区域传输共同影响着南京市的空气质量.PM_(2.5)的跨区域传输是此次重霾污染发生和消亡的重要因素.在霾污染事件的形成维持阶段,南京地区是作为周边地区PM_(2.5)的接收区,大气污染物主要由南京的西边界输入,大气污染物的外源输入是南京PM_(2.5)污染的主要贡献来源,占南京PM_(2.5)污染的84%.在霾污染事件的消亡阶段,南京地区则是作为周边地区PM_(2.5)的源,大气污染物主要由南京的东边界持续向外输出.  相似文献   

17.
成渝地区空气重污染天气形势分析   总被引:4,自引:3,他引:1  
利用Lamb-Jenkinson客观环流分型法,对成渝地区及4个子区域2014—2018年高度场和海平面气压场进行了环流分型,并探讨了环流型与空气污染的关系.结果表明,成渝地区海平面气压场的最高频率环流型为东北气流型(NE),850 hPa上为高压型(A),500 hPa上为平直西风气流型(W).综合来看,成渝地区易发生污染天气形势是:高空500 hPa为平直西风(W),地面和850 hPa上为低压(C)或东南气流型(SE);易出现优良天气的环流形势是:高空500 hPa为平直西风(W),地面和850 hPa上为高压(A)或东北气流型(NE).对个例进行分析后发现,当地面为气旋或东南气流,同时风速较小时,不利于污染物的水平扩散;若高空为弱脊控制或者为槽后西北气流,则在下沉气流的作用下,不利于污染的垂直扩散,地面污染进一步加重.  相似文献   

18.
中山市旱季霾特征及数值模拟分析   总被引:1,自引:1,他引:0  
利用观测数据、Hysplit后向轨迹模式以及WRF-CMAQ模式对中山市旱季霾特征进行模拟分析.中山市霾污染的天气形势以大陆高压型为主.当相对湿度在71%~90%时,气溶胶浓度和能见度的负相关性最显著,且当能见度减小到5 km以下时,PM_(2.5)浓度的大幅减小才能使能见度略有好转.最有可能引起中山发生霾天气的两条污染带,一条是沿中山至湖南南部,另一条是沿中山到粤东地区.WRF-CMAQ模式能较好地模拟出2014年1月份中山PM_(2.5)浓度、能见度的变化趋势以及广东省区域内灰霾的污染过程.在气溶胶质量权重及消光贡献中,硫酸盐的比重最高,在高相对湿度下,二次气溶胶的消光权重超过80%.通过中山PM_(2.5)过程分析发现,在霾过程,无冷空气时PM_(2.5)主要来自气溶胶反应、排放源和水平平流,贡献率分别为35%、15%和10%,有冷空气时水平平流的贡献最大,达37%;在清洁过程,无冷空气时气溶胶主要靠水平平流和干沉降清除,贡献率分别为-39%和-14%,有冷空气时清除以水平平流和垂直对流、扩散为主,贡献率分别为-29%和-25%,说明不同天气条件下霾的污染和清洁机制有着明显差别.  相似文献   

19.
利用中山市2000~2014年气象资料及2013~2014年环境监测站资料,分析中山市霾特征及气象影响因子,结果表明,中山市霾日数年际变化明显,最少为11d,出现在2005年;最多为134d,出现在2008年.霾天气主要发生在秋冬季节,霾日数最多的月份是1月,平均为10.5d.霾日PM2.5的平均浓度是非霾日的2.26倍,PM2.5是霾天气的重要污染物.中山市霾日典型天气形势有7种:大陆高压型、海上高压型、均压场型、冷锋前部型、台风外围下沉气流型、槽前脊后型、低压槽型.其中以大陆高压型占比例最高,为52.03%,冷锋前部型造成的能见度最低.气流轨迹聚类分析表明,影响中山的气流轨迹有7类,主要来源于东北方向的大陆和偏东方向的沿海;在东北方向气流轨迹影响下,污染物浓度较高;在东部沿海的气流轨迹下,能见度较低,表明中山市的霾天气受区域传输影响显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号