首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对Streptoverticilliummobaraense分批发酵合成谷氨酰胺转胺酶 (MTG)的氨基酸代谢流分布进行了理论分析 ;通过考察MTG分批发酵过程中的一些参数的变化情况 ,包括菌体干重 (DCW )、MTG酶活及残糖 (RSC)、菌体产率系数、MTG产率系数以及MTG的生产强度等 ,确定了适宜的初始淀粉浓度 ;对MTG发酵过程中氨基酸的代谢流分布进行了计算并作了较详细的分析 .研究结果表明 ,初始淀粉浓度 30g/L较适宜 ,DCW最高达 2 0 .9g/L ,酶活最高可达 2 .8UmL-1,菌体产率系数、MTG产率系数和MTG的生产强度分别为 0 .94g/g、12 5 .4U/g和 5 1.9UL-1h-1.氨基酸代谢流分布表明 ,只要发酵液中游离氨基酸充分 ,则细胞生长和产物形成就会活跃 ,限制细胞生长和产物的一个重要因素可能是MTG对氨基酸氮源的交联行为 ,表明可以采用不同氮源和控制氮源水平的方法改进菌体生长和MTG合成 .图 9表 2参 9  相似文献   

2.
为了实现黑木耳(Auriculariaauricula)深层发酵生产胞外多糖的高产量和高生产强度的统一,在7L发酵罐中研究不同pH对A.auricula分批发酵生产黑木耳多糖的影响.A.auricula细胞生长的最适pH为5.0,而黑木耳胞外多糖合成的最适pH为5.5.恒定pH有利于合成黑木耳多糖,但降低了黑木耳多糖的生产强度.发酵液中较高的pH不利于葡萄糖的消耗,使得发酵结束时的残余葡萄糖含量随pH的升高而升高.分析不同pH条件下A.auricula发酵生产黑木耳多糖动力学参数,发现较低pH有利于加快底物消耗,而较高的细胞生长速率则出现在pH5.0,pH5.5时细胞则具有较高的胞外多糖合成速率和对葡萄糖的得率.在此基础上提出了A.auricula发酵生产黑木耳多糖的两阶段pH控制策略:0~48h控制发酵液pH5.0,48h后控制pH5.5.实验结果表明,采用两阶段pH控制策略,A.auricula胞外多糖产量比控制pH5.5时提高了8.1%,残留葡萄糖含量降低了15.2%,产生最大胞外多糖的时间缩短至96h,且黑木耳多糖的生产强度比pH5.5时提高了35.1%.图4表1参21  相似文献   

3.
天然存在的高分子生物聚合物γ-聚谷氨酸(γ-PGA)因具生物可降解性、无毒性和非免疫原性而被广泛应用于食品、工业和医疗等领域,主要由微生物发酵制备;当前γ-聚谷氨酸的微生物发酵制备技术在我国基本上处于实验室研究阶段,距离大规模的工业化生产还有很大差距.综述γ-聚谷氨酸的高产菌株选育,包括分离筛选新的γ-PGA生产菌株以及对原有的菌株进行遗传诱变和基因操作、合成机制;发酵条件优化,包括对培养基的组成成分(碳源、氮源和金属离子等)和发酵因素(温度、pH和溶氧等)进行优化;发酵方式选择,包括常规的液体发酵方式以及以工农业废弃物为原料的固体发酵方式;分离方法的建立,包括有机溶剂沉淀法和金属离子沉淀法的比较等.最后对γ-PGA相对分子质量的调控、生产成本、分离纯化、具体合成机制和大规模生产进行展望,以期为γ-聚谷氨酸工业化生产及在我国进一步的推广应用提供理论支撑.  相似文献   

4.
应用五因子二次正交旋转回归试验设计,建立了微生物谷氨酰胺转胺酶 (TG)发酵生产过程中以酶活力和菌体细胞生长量作为目标函数的数学模型,并以此模型对链霉菌 (Streptomycessp. )WJS-825菌株发酵生产TG的培养条件进行优化,确定了影响TG生产的主要因子及其最适取值为多价胨 2. 1%、可溶性淀粉 1. 5%、初始pH 7. 0及培养温度 30℃.以该优化工艺条件进行了 5L发酵罐小试和 200L发酵规模的中试生产.结果表明,在中试发酵生产中使用以豆饼粉部分替代多价胨的经济性发酵优化培养基,以及发酵过程中在线监控pH、溶氧系数等多项发酵调控参数,并分段控制pH、温度、通气量和搅拌转速以及进行适时的流加补充碳源,该菌株生长繁殖能力强、产酶效果好,TG活性达 3. 2u/mL,而且连续重复的中试发酵生产试验的TG产量均稳定在 3. 2u/mL以上. 图 2表 3参 15  相似文献   

5.
γ-谷氨酰转移酶(GTE)是聚γ-谷氨酸生物合成的关键酶,地衣芽孢杆菌QBL-033是目前合成聚γ-谷氨酸的主要菌种,其γ-谷氨酰转移酶的研究尚未见报道.分离纯化该菌中的γ-谷氨酰转移酶,研究其辅酶组成,对揭示γ-谷氨酰转移酶的分子结构和性质,提高聚γ-谷氨酸产率很有必要.将培养至对数期中期的细胞离心收集并用缓冲液洗涤,细胞破碎、离心去除菌体碎片得无细胞抽提液.经DEAE-纤维素柱(HIC)、G-200凝胶过滤柱层析得到纯化大约70倍的以NADPH为辅酶的GTE和部分纯化的以NADH为辅酶的GTE,这两个酶分别对NADPH、NADH高度专一.经HPLC和SDS-PAGE测得前一种酶的分子量和亚基相对分子质量分别为235×103和39×103,表明该酶为具有相同亚基的六聚体.酶活性测定使用HLTACHI U-3000分光光度计利用NAD(P)H在340nm氧化的初速度进行.纯化结果表明,QBL-033中确实存在两种GTE.QBL-033是以NADPH为辅酶的GTE参与聚γ-谷氨酸的合成代谢,以NADH为辅酶的GTE参与聚γ-谷氨酸的分解代谢.同时发现以NADPH为辅酶的GTE在280 nm吸收很弱,在215 nm吸收很强,说明此酶中酪氨酸、苯丙氨酸含量较低.GTE最适作用温度和最适反应pH值分别为50 ℃和6.0,具有较宽的pH稳定性,并且在50℃以下较稳定.Ca2 、Co2 、Cu2 、Mn2 、Pb2 、K2 、Zn2 ,以及EDTA对酶有不同程度的抑制作用,Fe2 和Mg2 对酶有轻微的激活作用.图4表1参16  相似文献   

6.
不同培养方式下兽疫链球菌发酵生产透明质酸的研究   总被引:4,自引:0,他引:4  
对摇瓶的分批和补料、小罐的分批和流加发酵生产透明质酸(HA) 进行了比较研究,并对发酵机制进行了初步的探讨.在耗糖量相同的情况下,分批发酵比多次加料或流加发酵具有更高的HA产量和转化率;分批发酵初糖7% ,发酵24 h 左右,产HA3.6 g/L,转化率5.3 % ,流加发酵初糖3% ,15 h 耗糖7% ,此时,HA 为3 .0 g/L,转化率Yp/s4.2% ,继续发酵至20 h ,产HA4 .0% ,此时转化率Yp/s3 .6% ,两种发酵所产HA 的Mr 均为2 .0×106 . 分批发酵中HA、副产物乳酸都和菌体生长相偶联,流加发酵中乳酸和菌体生长是偶联的,其含量均不断增加,HA含量表现为在菌体生长前期与之偶联,而后下降.流加发酵的菌体比生长速率远高于分批发酵.  相似文献   

7.
脱硫脱硫弧菌去除SO2的工艺条件研究   总被引:1,自引:0,他引:1  
从太原污水处理厂分离到1株硫酸盐还原菌,对其进行形态学观察及生理生化特征测定,鉴定为脱硫脱硫弧菌(Desulfovibriodesulfuricans).该菌株在pH=7、温度30℃、搅拌速度270r/min时生长最好,处理SO2的能力最强.当二氧化硫进口浓度小于10334mg/m3,SO2-3累积浓度小于87.31mg/L时,菌体生长良好,碱液流加速率较小,但当二氧化硫进口浓度达到11582mg/m3,SO2-累积至124.06mg/L时,菌体生长受到抑制,系统被破坏.图6参11  相似文献   

8.
氮源是微生物过量合成L-精氨酸的重要营养因子之一,不同氮源对钝齿棒杆菌JDN28-75合成L-精氨酸的影响研究结果表明,硫酸铵为合适的氮源.不同初始硫酸铵浓度对JDN28-75产L-精氨酸的影响研究结果表明,氮源浓度过高或不足,都会使最终L-精氨酸产量有所降低.低浓度的硫酸铵虽然有利于菌体生长,但对L-精氨酸的合成明显不利,同时糖酸转化率也较低;而高浓度的硫酸铵尽管不利于细胞的生长且造成发酵结束时残糖含量过高,却有利于细胞合成L-精氨酸且实际耗糖的糖酸转化率维持在一个较高的水平.初始硫酸铵浓度为60 g/L时,对JDN28-75菌体的生长有明显的抑制作用,最终发酵液中剩余的硫酸铵也较多(大于30 g/L),但高浓度的硫酸铵是L-精氨酸合成所必需的.在上述研究结果的基础上,确定了初始硫酸铵浓度为20 g/L条件下的补氮策略,比较了4种不同的硫酸铵补加模式对产L-精氨酸的影响,结果表明,在总的硫酸铵浓度相同的情况下,采取分批、低浓度添加氮源的方式既可以有效解除发酵前期高浓度硫酸铵对菌体生长的抑制作用,又可以有效维持发酵中后期体系中菌体合成L-精氨酸所需的较高比例的氮源.最后,在5 L全自动发酵罐中采用20 g/L的初始硫酸铵浓度,连续流加25%的氨水来控制发酵体系pH及补加氮源,L-精氨酸的产量可以达到31.7 g/L,较对照组的产酸量(26.0 g/L)提高了21.9%.图4表2参11  相似文献   

9.
味精废水是一种高浓度有机废水,具有酸性强、高COD、高BOD、高硫酸根、高菌体含量和低温等特点,其中含有大量的L-谷氨酸、还原糖与氨氮,如果任其排放不仅浪费了宝贵资源,而且会造成严重的环境污染。实验利用味精废水作为培养基,培养枯草芽孢杆菌168得到产物γ-聚谷氨酸,对于探索味精废水的资源化利用途径和降低微生物法合成γ-聚谷氨酸的生产成本具有积极意义。单因素实验研究了培养条件对枯草芽孢杆菌168生长和γ-聚谷氨酸产量的影响,结果表明,味精废水浓度、初始pH、接种量和培养时间对枯草芽孢杆菌168生长和γ-PGA产量具有重要的影响。通过Box-Behnken响应面法进一步优化了枯草芽孢杆菌168的培养条件,优化后的培养条件为:味精废水稀释倍数3.88,培养初始pH 5.84,50 mL味精废水接种量10.55 mL,在37℃、180 r·min~(-1)条件下培养48 h,γ-聚谷氨酸的产量达到(53.51±0.92) g?L~(-1)。茚三酮比色法确定粗产品中γ-聚谷氨酸含量为78.24%(质量分数)。紫外扫描光谱分析显示检测样品中氨基和羧基的特点符合γ-PGA标准图谱特征,γ-聚谷氨酸的聚合键与蛋白质的肽键结构有明显区别,γ-聚谷氨酸是由γ-酰胺键聚合而成。傅立叶红外光谱和核磁共振分析显示,样品中含有酰胺基、羧基、羰基-CH、-CH_2等基团。对紫外光谱、红外光谱和核磁共振结果进行综合分析,可以初步确定样品中存在酰胺键连接的多聚体结构,即γ-聚谷氨酸的结构。研究结果显示,利用味精废水培养枯草芽孢杆菌168得到产物γ-聚谷氨酸在技术上是可行的,为味精废水资源化利用探索出一条可能的途径,且具有降低微生物法合成γ-聚谷氨酸成本的潜力。  相似文献   

10.
L-异亮氨酸(L-lie)产生菌代谢流的前期研究报道认为,较低的溶氧浓度有利于L-异亮氨酸的积累.为进一步提高L-异亮氨酸的产量,采用DO-stat流加培养控制方法,分别研究了溶氧浓度20%、30%、35%和40%下乳糖发酵短杆菌发酵液中葡萄糖浓度的变化以及L-异亮氨酸的合成情况.结果表明,当发酵罐中溶氧浓度控制在20...  相似文献   

11.
混合培养微生物利用甘油补料发酵生产乙醇研究   总被引:3,自引:1,他引:2  
采用浸麻芽孢杆菌和红曲菌990691用甘油混合发酵生产乙醇.结果表明,分批发酵中高浓度的甘油对乙醇发酵有着较强的抑制作用,分批发酵最佳甘油浓度为0.217 mol L-1.在分批发酵的基础上补料发酵,考察了不同甘油浓度的补料液和不同补料时间对乙醇发酵的影响.最终确定乙醇补料发酵较优的工艺条件为:反应器1 L,装液量700 mL红曲发酵液,甘油初始浓度为0.217 mol L-1,以补料方式每隔60 h分5次补加0.217 mol L-1甘油浓度的红曲发酵液,每次补加100 mL,发酵培养360 h.当乙醇最高浓度达0.221 mol L-1,乙醇总产率0.628 mmol h-1,乙醇/甘油转化率达87%(mol mol-1).与分批发酵相比,补料发酵很大程度解除了高浓度甘油的抑制作用,有效地利用了甘油,提高了乙醇的产量,且乙醇产率较为稳定.  相似文献   

12.
高抗铜青霉菌的筛选及其对重金属的吸附   总被引:7,自引:0,他引:7  
从一种铜矿尾矿土壤中分离得到一株高抗重金属盐的青霉菌株,其对Cu2 、Zn2 、Pb2 、Ni2 、Cr2 、Cd2 的抗性水平分别为150、150、35、15、5、5 mmol/L.在40 mmol/L Cu2 的胁迫下,该菌株的最适生长温度为30℃,最适pH为7.0.该菌以淀粉为碳源、以蛋白胨或硫酸铵为氮源时生长速度最快,草酸和柠檬酸也可有效促进菌体的生长.原子吸收结果表明,在pH 5.0、cu2 10 mg/L的铜溶液中,菌株45 min内可吸附98%Cu2 ;pH 6.0、金属离子浓度为100 mg/L时,菌体对Cu2 、Zn2 、Pb2 、Ni2 、Cr6 、Cd2 的吸附量分别为22.8、8.9、18.2、8.4、4.3、5.5 mg/g干菌体,同时Cu2 的存在抑制了菌体对Zn2 、Pb2 、Ni2 、Cd2 的吸附,然而能在小范围内促进对Cr6 的吸附,但促进程度不显著.  相似文献   

13.
对摇瓶的分批和补料、小罐的分批和流加发酵生产透明质酸(HA)进行了比较研究,并对发酵机制进行了初步的探讨.在耗糖量相同的情况下,分批发酵比多次加料或流加发酵具有更高的HA产量和转化率;分批发酵初糖7%,发酵24 h左右,产HA3.6 g/L,转化率5.3%,流加发酵初糖3%,15 h耗糖7%,此时,HA为3.0 g/L,转化率Y  相似文献   

14.
为揭示产甘油假丝酵母Candida glycerinogenes补料发酵后甘油合成衰减机理,以指导甘油合成及菌株改造,对补料发酵后甘油的生成情况、葡萄糖的消耗情况、细胞内的代谢流量变化以及代谢途径关键酶活力变化进行了研究.结果表明,补料发酵后葡萄糖的代谢流量分布发生变化,流向HMP途径和甘油合成途径的流量分别降低48%和33%,更多的碳流通过EMP途径形成副产物;胞浆3-磷酸甘油脱氢酶(ctGPD)和6-磷酸葡萄糖脱氢酶(G6PDH)的活力下降,而丙酮酸激酶(PYK)活力上升.补料发酵后甘油合成关键酶ctGPD酶活力低下,流向甘油合成途径的碳流减小,还原力供给受影响,这些因素共同作用引起了补料发酵后甘油合成的衰减.  相似文献   

15.
枯草芽孢杆菌ME714产聚-γ-谷氨酸固态发酵培养基的优化   总被引:3,自引:0,他引:3  
为了提高固态发酵聚-γ-谷氨酸(PGA)的产量,对发酵培养基中的4个主要外加营养组分——谷氨酸钠、尿素、柠檬酸钠、淀粉的配比采用正交设计方案进行试验设计,运用径向基神经网络(RBFNN)建立PGA产量与培养基组分浓度之间的预测模型,采用遗传算法(GA)对此模型进行全局寻优,得到4种主要组份的优化配比:谷氨酸钠318g/kg、尿素28.3g/kg、柠檬酸钠24g/kg、淀粉46g/kg.采用上述方法优化后PGA产量达到75.3g/kg,较原始培养基提高了25.1%.图1表3参14  相似文献   

16.
为进一步提高重组Bacillus subtilis WSHB06-07发酵生产角质酶的产量和生产强度,在pH两阶段控制策略的基础上,考察了温度(27~40℃)对菌体生长和产酶的影响.研究发现,37℃适于菌体生长而30℃适于菌体产酶.通过分析发酵过程中菌体比生长速率及产物比合成速率的变化,确定了温度两阶段控制策略,即0~4 h时控制温度37℃,4 h后将温度调至30℃.通过采用这一优化策略,角质酶酶活和生产强度分别可达312.5 U/mL和13.02 kU L-1 h-1,相比恒定温度37℃控制模式下分别提高了83.4%和10.9%.图6表2参13  相似文献   

17.
采用自行筛选获得一株产碱性果胶酶芽孢杆菌WSH03-09,在小型发酵罐中研究了不同温度对碱性果胶酶分批发酵的影响,结果表明,在恒定39℃条件下,可获得最高酶活5.39u/mL,各温度条件下的菌体干重相差不多,最终均能达11.5g/L左右;在发酵前期,控制温度41℃时最有利于菌体的生长,而在产物合成期,控制37℃有利于获得较高的产物合成比速,在此基础上,提出分阶段温度控制策略,采用此温度控制策略进行碱性果胶酶的发酵,碱性果胶酶酶活达5.99u/mL,比采用单一温度下的最大值提高了11%,其它各项指标也有较大提高.图6表1参6  相似文献   

18.
灵芝深层发酵生产胞外多糖和灵芝酸的动力学分析   总被引:1,自引:0,他引:1  
利用Sigmoidi函数构建了灵芝深层发酵生产胞外多精和灵芝酸的非结构动力学模型,并根据Boltzmann拟合求解出模型参数,模型预测值能够较好地吻合实验所测值.细胞最大比生长速率цmax为4.63x10-2 h-1,葡萄糖最大比消耗速率qs,max为6.70x10-2 h-1,胞外多糖最大比合成速率qEPs,max为4.65x10-3h-1,灵芝酸最大比合成速率qGA,max为9.09xlO-4 h-1.灵芝胞外多糖的合成与细胞的生长呈现部分偶联关系;灵芝酸的合成与细胞的生长呈现偶联关系,偶联系数αGA为0.020 4 g g-1.胞外多糖对葡绚糖的最大得率系数(YEPS/S)为O.214 g g-1;灵芝发酵40~80 h代谢碳流迅速从菌体自身生长迁移至胞外多糖合成,用于合成胞外多糖的最大碳流为23.60/0.  相似文献   

19.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,其最重要的用途是作为合成聚酯PTT的单体.由于微生物发酵法生产1,3-PD具有操作简单,不易产生有毒副产物等特点,已得到广泛关注.本研究在前期工作的基础上,分别获得了来源于肺炎克雷伯氏菌的甘油脱水酶编码基因dhaB和来源于大肠杆菌的1,3-PD氧化还原酶同工酶编码基因yqhD,利用温控表达载体pBV220串联构建了重组质粒pBV220-yqhD-dhaB,将其转化大肠杆菌得到产1,3-丙二醇温控重组大肠杆菌JM109(pBV220-yqhD-dhaB).该重组菌在LB培养基中,30℃好氧培养12 h至对数生长中期,再经42℃好氧诱导发酵4 h,测得胞内甘油脱水酶和1,3-丙二醇氧化还原酶同工酶的酶活力分别达到260 U/mg蛋白和140U/mg蛋白;在含甘油40 g/L的发酵培养基中,30℃好氧培养12 h至对数生长中期,再经42℃好氧诱导发酵4 h,测得发酵液中1,3-PD含量为8.5 g/L.这将为进一步构建基因工程菌生产1,3-PD打下坚实的基础.图6表1参18  相似文献   

20.
产甘油假丝酵母(Candida glycerinogenes)能够利用甘油大量生长菌体而无有机酸、醇等代谢物积累,是潜在的优良宿主细胞.为了解C.glycerinogenes甘油分解代谢途径,成功克隆得到二羟基丙酮(DHA)途径的编码基因Cg GCY1、Cg GCY2和Cg DAK.利用"Ura-Blaster"敲除盒分别构建的缺失突变菌Cggcy1?/gcy2?和Cgdak?均不能在甘油培养基中生长.q RT-PCR及酶活测定结果显示,与葡萄糖培养相比,甘油培养下细胞通过强化糖异生、HMP途径积累生物量,下调EMP途径和副产物合成关键酶表达以弱化有机酸、醇的合成,同时上调TCA循环以补偿EMP途径下调带来的能量和还原力不足,使得生物量提高24.5%而不积累有机酸、醇等代谢物.以甘油为共底物进行木糖发酵,木糖醇产量和转化率达到39.4 g/L和89%,与葡萄糖为共底物相比分别提高了79%和32.8%.本研究表明C.glycerinogenes甘油分解代谢仅依赖于DHA途径,以甘油为共底物更有利于木糖醇的合成和转化;结果可为代谢改造C.glycerinogenes以甘油为共底物合成高附加值化合物打下基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号