首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了解东洞庭湖水域的碳汇特征,于2022年4月涨水期对东洞庭湖区域进行调查采样,并同步监测关键环境因子.运用垂向归纳模型和薄边界层法分别研究了东洞庭湖涨水期浮游植物的初级生产力以及水-气界面CO2和CH4的交换通量,基于碳收支关系计算水域净碳汇通量并分析其影响因素.结果表明:东洞庭湖涨水期水域碳汇能力存在空间差异性,总体表现出碳源的特征.湖区出口、城陵矶、岳阳楼、扁山、鹿角、湖中岛、蝴蝶口、大小西湖、六门闸上游、红星洲净碳汇通量为负值,表现为碳源,通量波动范围为-4.92~-0.17(mmol/(m2·h)),平均值为-1.95mmol/(m2·h);东湖区、六门闸下游净碳汇通量为正值,表现为碳汇,通量波动范围为1.10~2.24(mmol/(m2·h)),平均值为1.67mmol/(m2·h).东洞庭湖水域的净碳汇通量(NPP)主要受CO2通量(FCO2)、CO2分压...  相似文献   

2.
氨可以在大气中转化生成铵根离子,成为PM2.5中重要的水溶性无机离子组分,长时间序列的氨排放清单是研究PM2.5污染历史成因的重要基础.为探究京津冀及周边地区人为源氨排放来源和排放特征,根据北京市、天津市、河北省、山西省、山东省和河南省的各类氨排放活动水平,采用排放因子法建立了京津冀及周边地区的氨排放清单.结果表明:(1)2008—2020年京津冀及周边地区的氨排放量总体呈下降趋势,从3 170.21×103 t降至2 767.59×103 t.农业源是主要贡献源,其氨排放量(2 551.94×103~3 061.26×103 t)占氨排放总量的92.21%~93.38%;非农业源氨排放量介于209.85×103~232.38×103 t之间.(2)2020年,河南省的氨排放量最大,为908.57×103 t,占京津冀及周边地区氨排放总量的32.83%,其次为山东省、河北省和山西省,占比分别...  相似文献   

3.
李阳  陈敏鹏 《中国环境科学》2020,40(5):2030-2039
利用清单方法核算了1980~2016年长江经济带农业源非二氧化碳(CO2)温室气体的排放总量和排放强度,分析了不同经济发展情景和农业-环境脱钩状态下长江经济带2030年和2050年的排放情景.研究表明:时间维度上,1980~2016年长江经济带农业源非CO2温室气体排放总量呈上升趋势,从0.26Gt CO2-eq上升到0.32Gt CO2-eq;2030年和2050年在高情景和中情景2种情景下,长江经济带农业源非CO2温室气体排放量不会达峰,江苏、湖南、重庆、云南、湖北和安徽等六省(市)的单位农地面积排放强度将增加;3种情景下,四川始终为单位农地面积排放强度较低的地区.  相似文献   

4.
海湾区域的温室气体排放对于全球变暖具有重要影响,因此本研究选取中国东部典型海湾-象山湾作为研究对象,通过对CH4和CO2的浓度与同位素的时空变化特征分析来揭示海岸带对全球气候变化的影响.象山湾海域低层大气中CH4浓度变化范围为(1.72~2.17)×10-6,平均浓度为1.82×10-613CCH4的变化范围为-60.69‰~-41.10‰,平均值为-50.261‰;CO2浓度变化范围为(410.3~640.3)×10-6,平均浓度为433.294×10-613CCO2的变化范围为-16.79‰~-2.33‰,平均值为-6.83‰.CH4含量整体上呈湾内大于湾外、从陆地向海方向逐渐减少的趋势,表明近浅海区域是大气甲烷的源;而CO2含...  相似文献   

5.
为了解河南省人为源挥发性有机物(VOCs)的排放特征,识别以臭氧(O3)污染治理为目的的关键VOCs物种及其排放源,以五大类人为源活动水平数据为基础,采用排放因子法建立了2019年河南省县级人为源VOCs组分化排放清单,并利用最大增量反应活性(MIR)估算其臭氧生成潜势(OFP),基于OFP识别O3污染治理的关键VOCs物种及其排放源.结果表明:(1)河南省2019年人为源VOCs排放总量为175.62×104 t,其中工艺过程源、移动源、生物质燃烧源、溶剂使用源和化石燃料燃烧源对VOCs排放总量的贡献率分别为28.6%、25.2%、20.8%、19.1%和6.3%.(2)空间分布显示,以郑州市为中心的豫北排放量远高于豫南,呈“一高三低”的空间分布特点,郑州市排放量最高,其排放量为27.7×104 t,漯河市、三门峡市和鹤壁市排放量最低,其排放量均小于5.0×104 t.(3)芳香烃是排放量最高的化学组分,其排放量为47.5×104 t,其次为烷烃(46.3×104<...  相似文献   

6.
工业碳减排绩效及其影响因素动态分解   总被引:1,自引:0,他引:1  
进入21 世纪以来,中国工业碳排放总量仍在波动中增长。为了考查近10 a 来中国工业碳减排绩效,并定量分析影响工业碳减排的主要因素对碳减排的贡献变化情况,论文通过构建中国工业碳排放数据库并运用“精确”的Laspeyres 分解方法,对中国2001-2010 年36 个工业行业CO2减排的影响因素进行了动态分解,研究结果表明:①虽然中国工业CO2排放总量在不断增加,但CO2排放增长率和工业碳排放强度双双降低,在考察周期内,CO2排放总量从2001 年 2.89×109 t 增长到2010 年7.16×109 t,工业碳排放量增长率则从2003 年最高值18.86%持续下降至2009 年的5.77%,工业整体碳排放强度由2001 年的29.14 t/104元下降到2010 年的18.12 t/104 元;②工业经济规模不断增加是工业CO2排放增加的主导因素,技术进步和结构调整则有效抑制了CO2的增加,10 a 间规模效应对CO2排放总量增加的贡献度年均达到191.81%,但是由于受到技术进步效应和结构调整效应的共同作用,10 a 来总效应值年均只有109.15%;③较之技术进步效应,结构调整效应对工业CO2减排的贡献度更大,结构调整效应累计促进碳减排达2.07× 109 t,而技术进步效应促进减排的总量只有1.14×109 t。论文认为,着力中长期减排政策的制定,以保证技术进步在碳减排中持续发挥作用,同时充分挖掘结构调整对减排作用潜力是中国实现工业碳减排的务实选择。  相似文献   

7.
为准确掌握聊城市大气污染物排放情况,加强大气污染管控,本文采用“自上而下”与“自下而上”相结合的方法建立了聊城市2020年大气污染物排放清单.结果显示,2020年聊城市SO2、NOx、CO、VOCs、NH3、PM10、PM2.5、BC、OC排放量分别为11.70×103、61.28×103、285.19×103、28.43×103、66.87×103、47.83×103、17.15×103、0.751×103、1.07×103 t.其中,SO2最大排放源为化石燃料固定燃烧源(64.96%),移动源为NOx排放第一大源(71.27%),CO排放主要来源于工艺过程源(45.71%)和化石燃料固定燃烧源(32.88%),VOCs的主要排放源为溶剂...  相似文献   

8.
基于IPCC温室气体排放清单指南中的CO2排放因子与核算方法,估算了1995—2010年中国服务业能源消费与CO2排放量,并对其总体变化趋势进行时间序列分析;以LMDI(对数平均迪氏指数)法辨识与分解3个时段(1995—2000年、2000—2005年和2005—2010年)中影响中国服务业CO2排放量变动的关键因素及其对CO2排放量的贡献值. 结果表明:1995—2010年中国服务业能源消费CO2排放量增长态势明显,累计排放总量为853197.55×104t;服务业能源消费主要依赖于高碳化能源燃料,各年度油品和煤品分别占能源消费总量的67%~74%和5%~27%;LMDI分析结果显示,1995—2010年产业规模和人口效应引起CO2排放增加量分别为133357.10×104和7691.25×104t,能源效率和能源结构引起CO2排放减少量分别为59034.50×104和23898.60×104t. 提出CO2减排对策:①以经济、政策和监管手段促进服务业节能减排;②依托科技创新提高能源综合利用效率,降低服务业CO2排放量.   相似文献   

9.
利用长江三角洲地区南京和苏州两个典型城市的中心城区观测点、南京郊区观测点以及南京市溧水区乡村草地和农田观测点为期一年的CO2通量观测数据,分析不同下垫面之上CO2通量观测值的差异以及城市和郊区不同观测高度的CO2通量观测值的差异.结果表明,城市在CO2地气交换过程中的作用是碳源,而植被下垫面为碳汇;城市粗糙子层中CO2通量观测值随高度增大,上层观测值具有较好的局地代表性;郊区站两个观测高度处于惯性子层之中,CO2通量观测值比较接近,而它们之间的差异则反映了各自高度所对应的不同源区域范围内排放和吸收的不同.依据观测数据估算了不同下垫面的单位面积CO2全年净排放/吸收量,南京和苏州市区全年净排放量分别是18.2 kg·m-2和15.5kg·m-2;农田和草地的全年净吸收量分别是2.9 kg·m-2和0.6 kg·m-2;郊区观测点25 m高度所对应的源...  相似文献   

10.
为全面评估沈阳市大气污染物排放状况,文章收集和整理了相关活动水平信息和排放因子数据并采用排放因子法建立了2016年沈阳市人为源大气污染物排放清单。结果显示:2016年沈阳市人为源CO、NOx、SO2、NH3、VOCs、PM2.5、PM10、BC和OC的排放总量分别为38.64×104、10.63×104、3.17×104、5.28×104、14.03×104、5.54×104、10.59×104、0.57×104和1.82×104 t。按照排放源分类,CO、NOx和BC主要来自移动源,SO2主要来自化石燃料固定燃烧源,NH3主要来自农业源,VOCs主要来自工艺过程源,PM2.5和PM10主要来自扬尘源,OC主要来自其他...  相似文献   

11.
为研究石家庄市域臭氧(O3)和NO2的时空演替格局及污染来源,取2014~2017年市域18个区县(市)的O3、NO2和气象要素资料(温度、湿度、风速、降水、日照),及2017年夏季挥发性有机物(VOCs)数据,采用网络分析(network analysis)、空间插值(IDW)、Moran模型及后向轨迹方法,对市域内区县O3和NO2的空间联系、演替格局、空间影响因素及污染来源进行了分析.结果表明:①2014~2017年市域O3浓度呈上升趋势,市区O3月度变动呈单峰型态势,5~9月是O3污染(O3≥160 μg·m-3)的典型时期(TPOP),TPOP的气象特征为高温低湿弱风强光照,NO2在TPOP内的负相关性显著;②主城区O3浓度在2015年后呈逐年显著上升,主城区的污染物类型从NO2(2014~2016年)转为VOCs(2016~2017年),而县域2014~2017年均属VOCs控制区;③市域O3空间影响因子主要集中于工业、农业、经济和人口这4个维度(P≤0.05).第二产业对O3污染的高值中心出现在主城区和栾城区,与区域内工业生产活动有关;④VOCs夏季监测期间的轨迹聚类出3个来源方向,即A(东-东北,26.67%)、B(西北-西,43.33%)及C(东南-南,30%),轨迹A和C是VOCs传输的主要方向(东-东南).  相似文献   

12.
宁波市PM2.5中碳组分的时空分布特征和二次有机碳估算   总被引:2,自引:0,他引:2  
为了研究PM2.5中碳质组分的时空分布特征,于2012年12月至2013年10月4个季度典型时段在宁波市5个采样点采集环境大气中的PM2.5,分析了样品中有机碳(OC)和元素碳(EC)的质量浓度,并估算二次有机碳(SOC)对OC的贡献.结果表明:1宁波市PM2.5年均质量浓度为51.6μg·m-3,其中OC和EC的比例分别为17%和6%.反向轨迹模型的分析结果表明,来自内陆地区的区域传输可能是冬季和春季PM2.5浓度较高的主要原因.2OC/EC比值和OC与EC的相关性分析结果表明,夏季有大量SOC生成,而冬季则可能受华北地区燃煤供暖的显著影响.3用EC示踪法对宁波市的SOC进行了估算,结果表明宁波冬季和春季受到区域传输的显著影响,污染源较不稳定,不宜使用该估算方法.夏季和秋季的SOC质量浓度分别为2.5μg·m-3和2.3μg·m-3,占OC的42%和28%.  相似文献   

13.
VOCs是O3和SOA形成的重要前体物,可增强大气氧化性,促进二次污染物形成,影响区域空气质量和人体健康.为研究铜川市秋冬季VOCs特征及其对O3和SOA生成的潜力,利用TH-300B在线监测系统监测了铜川市区102种VOCs的体积分数,并结合最大增量反应活性系数法和气溶胶生成系数法分别计算VOCs的O3及SOA生成潜力.结果表明,铜川市秋季和冬季φ(TVOC)分别为(50.52±16.81)×10-9和(63.21±35.24)×10-9,O3生成潜势分别为138.43×10-9和137.123×10-9, SOA生成潜势分别为3.098μg·m-3和0.612μg·m-3.秋季VOCs中含量最多的2种组分为烷烃(26.19%)和芳香烃(26.04%),冬季VOCs中含量最多的组分为烷烃(48.88%).反-2-戊烯、甲苯和间/对-二甲苯是秋季OFPs最大的3个成分,...  相似文献   

14.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

15.
太原市PM2.5中有机碳和元素碳的污染特征   总被引:4,自引:3,他引:1  
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差.  相似文献   

16.
氨氧化细菌(AOB)和氨氧化古菌(AOA)是驱动土壤氨氧化过程的"引擎".氨氧化过程在土壤氧化亚氮(N2O)和一氧化氮(NO)排放过程中扮演着重要角色.有机无机肥配施是实现化肥零增长和作物稳产增产的重要途径,但在有机无机肥配施下,菜地土壤AOB和AOA对氨氧化过程的相对贡献仍不清楚.本研究采用选择性抑制的方法(辛炔和乙炔)区分有机肥添加近3年后(2016年10月—2019年5月)AOB和AOA在氨氧化过程中对碱性菜地土壤N2O和NO产生的相对贡献.试验共设5种施肥处理:不施氮肥(CK)、单施尿素(N)、单施有机肥(M)、50%尿素+50%有机肥(M1N1)和80%尿素+20%有机肥(M1N4).结果表明,有机无机肥配施(M1N1和M1N4)可显著增加土壤电导率、有机碳和全氮含量.培养试验发现,与N处理相比,M和M1N1处理分别使N2O排放量增加100.7%和38.8%,NO排放量增加77.9%和42.8%,AOB基因丰度增加16.6%和10.2%,同时,AOB对N2O排放的相对贡献增加6.5%.相反,M1N4处理分别使N2O和NO排放量降低19.3%和4.8%,AOB基因丰度降低37.5%,同时,AOB对N2O及NO排放的相对贡献分别降低7.8%和7.4%.相关分析表明,土壤N2O和NO累积排放量与土壤AOB基因丰度呈显著正相关(p<0.05),与土壤AOA基因丰度无显著相关性.有机无机肥配施下AOB是氨氧化过程的主要驱动者,适当比例的有机无机肥配施(即M1N4)措施可在一定程度上减弱AOB对碱性菜地土壤N2O及NO排放的相对贡献.  相似文献   

17.
运用一步热聚合法成功制备出二维超薄g-C_3N_4(UCN)纳米片,通过透射电子显微镜、比表面测定仪、紫外可见漫反射光谱、荧光光谱对UCN的形貌及光学性能进行表征,并利用g-C_3N_4对水相中的双氯芬酸钠(DCF)进行了光催化降解实验.结果表明,UCN具有二维超薄纳米片结构,且具有较高的比表面积、较强的可见光吸收能力及空穴-电子转移能力.UCN的光催化活性优于块状g-C_3N_4,过硫酸盐(PDS)的加入对双氯芬酸钠的降解有促进作用,UCN/PDS体系中对双氯芬酸钠降解起主导作用的活性物种为O【math203z】,经过150 min的反应,双氯芬酸钠的矿化率达到78%.双氯芬酸钠在UCN/PDS体系下的光催化降解符合一级动力学规律和Langmuir-Hinshelwood模型,DCF的光催化降解在偏酸和偏碱性的情况下具有较快的反应速率.DCF在河水中的反应速率是超纯水中的3.4倍.循环实验表明,UCN具有很好的光催化稳定性.  相似文献   

18.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

19.
石家庄市采暖季PM2.5碳组分昼夜污染特征及来源分析   总被引:1,自引:0,他引:1  
为探究2017年石家庄市采暖季昼夜PM2.5中碳组分的污染及来源特征,选取2017年11月30日-2018年1月22日时间段分别采集石家庄白天(8:00-20:00)、夜晚(20:00-翌日8:00)的PM2.5样品,分析PM2.5组分中OC和EC昼夜间的浓度变化特征、来源特性,SOC的估算及影响因素,并对石家庄市碳质气溶胶进行源解析和区域传输分析.结果表明,①采样期间白天PM2.5、OC和EC的平均质量浓度分别为(110.6±71.6)、(39.9±20.4)和(9.3±3.6)μg·m-3,夜间平均质量浓度分别为(128.5±75.3)、(64.7±36.5)和(13.6±6.0)μg·m-3,PM2.5、OC和EC质量浓度均呈现出夜间质量浓度高于白天的特征.②燃煤和机动车尾气排放在增加了一次有机碳(POC)和元素碳(EC)的本底质量浓度的同时,产生的CO、NO2、SO2等气体污染物又促进了光化学反应,两者协同作用下促进了SOC质量浓度的生成和积累.根据估算,SOC、SOC/OC值在夜间高于白天,白天较强的太阳辐射和光化学活性是SOC转化的主导因素,夜间气态有机前体物浓度是SOC转化的主导因素.③采样期间昼夜间OC、EC的相关性较好,其来源具有较好的同源性.大气PM2.5碳质气溶胶主要来自燃煤、汽油车和柴油车尾气排放混合源,夜间柴油车污染源对碳质气溶胶的贡献率较白天更为明显.④后向轨迹结果表明,石家庄市严重污染期间颗粒污染物浓度变化主要受到低空东北方向气团的影响,PM2.5以及OC、EC质量浓度的变化和周边地区的污染物输送有关.  相似文献   

20.
为研究某电子垃圾拆解地大气中PM10及其典型污染物含量以及对人体健康的危害,采用主动式大气颗粒物采样器采集大气样品,分析ρ(PM10)及其所携带的ρ(PCBs),ρ(Cd)和ρ(Cu),利用美国环境保护署(US EPA)人体健康风险评估模型,评估PM10携带的污染物对研究区居住用地及工商业用地方式下人体的致癌及非致癌风险,分析模型参数对风险评估结果的敏感性.结果表明:在采样期间研究区ρ(PM10)日均值为0.05~0.32 mg/m3,14个样本均超过我国《大气环境质量标准》(GB3095—82)ρ(PM10)一级日均标准值(0.05 mg/m3);大气PM10中的ρ(PCBs)为8 971.5~17 197.6 pg/m3,高于国内外其他地区;ρ(Cd)和ρ(Cu)分别为2.7~18.3和127.8~1 218.0 ng/m3;ρ(PCBs),ρ(Cd)和ρ(Cu)最高值出现位置均为附近新近出现焚烧行为的YLY(玉露杨)采样点.健康风险评估结果表明,居住用地方式下PM10中污染物引起的致癌风险超过可接受风险(10-6),绝大部分由Cd引起;参数敏感性分析表明,污染物特征、成人个体及行为参数对致癌风险影响最大,儿童行为及污染物特征参数对非致癌风险影响最大;在进行健康风险评估时,参数须尽量通过实地调查获得,以降低评估结果的不确定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号